Appendix

The Particle
Waves
Assumption

Mathematical

This appendix is intended for use by mathematically trained persons. If yoy
are not a mathematician, do not feel that you will be left behind because you do
not understand it. If you have carefully read the preceding chapters you should
already have a firm picture of all the important concepts and ideas without
added mathematics. On the other hand, mathematical relationships ar .
important to help pioneers on the road to further exploration, as well as to
establish with certainty some of the ideas which are only stated in the text.

Most of the mathematical proofs below are separated subjects which stan
alone. They have the same bold-face headings as the related material of the text.

he first assumption of this model is that the waves of the space resonances

are solutions of a scalar wave equation whose waves propagate in space with
velocity c. This is an assumption that space has this property of propagating
particle waves. There is no proof that this is true, but it can be believed if the
results are more in agreement with experiments than are other theories.

I. PARTICLE-WAVES ASSUMPTION:
Space can propagate scalar waves, not directly observable, according to

2
v2o- 1220
2\ ot?
where ® is a continuous scalar amplitude with values everywhere in space, an
c is the propagation speed.
This equation is similar to many other oscillatory equations found in nature.

The assumption provides only a propagation equation for the particle waves.

Two solutions of the equation, an inward-moving spherical “IN wave,” and
an outward-moving “OUT wave” are combined to form a standing wave whos
properties are investigated in this paper. This combination is a “space-resonance.”

An important result is that the scalar wave-equation allows the amplitude
to be finite at the center. Mathematically, this is only possible for a scalar wave,
not a vector wave .
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he two spherical wave solutions which form the space resonances will be
obtained now for the case of a stationary resonance.

The wave equation when written in spherical coordinates, becomes

2 2
0 rz ri ar c2 ot
where ® is wave amplitude and r is radial distance.

This equation has two solutions for the amplitude ®; one of them is a
converging (IN) spherical wave and the other is a diverging (OUT) wave,

N = %(Doe(iwnixr) @OV %q)oe(imt—ixr)

They can be combined so that the amplitudes at r = O are opposite. This
combination removes the infinity atr=0. The combined wave is the difference
of the amplitudes of the IN and OUT waves of a resonance, which is written

iojt+ Kil') a

d)=<I>'N—CI)OUT=Ae( Ae(

ioat-ikar
° °), i=IN, 0= OUT

where ® = 2nmcZ/h = xc is the mass-frequency of the space resonance. The
complex amplitudes A include the range factor of 1/r and are alike because of
the symmetry of the IN and OUT waves.

The intensity of combined IN and OUT waves is the envelope of ®*®,
D = (Ae —(iwit+i Kol’) _Ae —(iu)it—i Kor)j y (Ae (imit+i Kol') _Ae (ia)it—i Kor))

After multiplying and reducing, the intensity becomes,
O*P = 28— 2A2cos[(1<i + Ko)r - (coi - mo)t]

The distinction between frequencies and wave numbers of the two waves
can be used to investigate different properties, but if there is no motion of the
resonance, then ;= w, = and «;=xg=x, and the intensity reduces to

OxP = 4A2[l - lcos(ZKr)] = [2Asin (KI‘)]
2 2
which is the envelope of the oscillating standing particle waves. The standing
wave has nodes located at r = n w/x. It has spherical symmetry in its own
inertial frame, and may be envisioned like layers of spherical, concentric,
oscillating nodes whose intensity decreases as 1/r2 away from its center.

The intensity at the center is obtained by taking the limit as r — O in the
sine function and in A. It is equal to the constant part of A, so the absurdity of

Sﬁherical
Wave
Solutions
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the point charge of the electron leading to an infinite energy does not occur
The standing waves in this spherical geometry are mathematically analogoys t(;
standing waves in a long pipe, except that the pipe has undergone
transformation that opens one end to 4r radians (becomes a sphere) while
stretching the radius to «, and at the same time shrinking the other end of the
pipe to a point at the origin.

Relaﬁve motion between two resonances is very important since both QM
and special relativity are physical laws which depend upon the relatiye
Resonances velocity. Accordingly we now investigate the properties of the resonance waves
With Relative which arrive from another resonance having relative velocity B = v/c with
Motion respect to the first.

The frequency of the resonances have been chosen to be equal to the mass.
frequency of a fundamental particle like an electron. By doing this, the relation
between a space resonance and a particle can be quickly seen. This is an
assumption, or can be regarded as incorporating experimental measurement of
masses into the theory.

The appearance of the waves from a resonance, which arrive at another
resonance, are changed if relative motion with velocity B = v/c exists. Then the
Doppler effect alters the received frequencies, velocities, and wave numbers. The
IN waves are red shifted and the OUT waves are blue shifted according to the
relativistic Doppler factors, D and 1/D, where ‘

D=y(1-p), YD=y(1+B), and y=(1-p»7 |

The effect is perfectly symmetrical as it must be in relativity. Both resonances ‘
receive the same information from the other because the relative velocity is the '
same for both.

Note that we are only calculating waves which pass by and through each
resonance. There is no reception or interaction by either resonance, since we
have not yet introduced any means of energy exchange.

Using these factors, the received Doppler-shifted wave amplitude is then ‘
= Aei(ct+r)K/D _Aei(ct—r)KD |
Inserting the expressions for the Doppler factors,

© = A i(ct+r)tc/y(1+[3) _Ae i{ct—r)ey(1-8)

240 MATHEMATICAL APPENDIX

From: Exploring The Physics Of The Unknown Universe by Milo Wolff, 2nd ed., 1994



Multiplying exponents, rearranging, and factoring,
P p gimng
o= Aeixy(ct+[3r)(eixy(ﬁct+r)_ e—iKy(Bct+r))

Combining the last two exponential terms, the Doppler-shifted wave of either
resonance, received at the other resonance, becomes

o= 2AeiKY(Ct+6r) sin [Ky(Bct + r)]

This equation has the form of an exponential carrier wave modulated by a
sinusoid. The surprising characteristics of the carrier wave are:

wavelength = h/ymv = deBroglie wavelength
frequency = kyc/2n=ymc?/h = mass-energy frequency
velocity = ¢/p = phase velocity.
The modulating sine function has:
wavelength = h/ymc = Compton wavelength
frequency = ymc2B/h = 8 (mass frequency) = momentum frequency
velocity = fic= v =relative velocity of the two resonances.

These wave properties are complete. They show that the two resonances
contain the law of special relativity, and the law of QM implied by the deBroglie
wavelength. All the parameters that can be measured for a moving particle, are
contained in the above equation. Respectively, they are: The two quantum-
mechanical parameters: a deBroglie wavelength and the Compton wavelength;
and for relativity, the elements of the four-momentum vector: i.e. rest mass and
three components of linear momentum. The latter are expressed in terms of
frequency with the correct Lorentz factors.

Because the resonances contain the deBroglie wavelength, it can be used to
obtain the Schroedinger Equation as originally constructed by Schroedinger.

hen Maxwell propounded his four equations in 1886, they were .
heralded as the fundamental expression of electromagnetic laws. Later, Magnetic
1905 and later, Einstein’s special relativity was discovered, but it was not Equations from
significantly recognized for about a half-century that the two laws of induction Coulomb’s Law

and Relativity

|
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involving magnetism were a consequence of relative motion between charges,
or that relativity played a role.

Even today, few scientists are fully aware that magnetic forces are a
perturbation of the Coulomb electric forces as a result of relative motion.
Maxwell’s Equations, despite their fundamental value in the study of electricity,
are not fundamental laws of Nature. Only the Coulomb force law and the special
relativity are fundamental. Maxwell’s Equations are obtained from these two.

In order to make it clear that Maxwell’s magnetic equations do not belong
on the list of fundamental laws, I show below how they are obtained from
Coulomb’s law and relativity.

e will use transformations between a reference frame 1 and a reference

Transformations frame 2 which have a relative velocity v in the x direction. Subscripts 1
of Special and 2 on the symbols indicate that they represent quantities measured by
Relativity observers located in frame 1 and frame 2.
The relativistic expansion factor yis
1
J1-v?/c2
Charge and Current Density. Charge density p, which is stationary in frame 2
is seen as a current density J;, moving in the x direction in frame 1, and vice-
versa. The transformation is
= 1{92*’(% )]2xi| (A-1)
Partial Derivatives. The operations of taking derivatives in one frame
transform to the other frame as
SN B A )
aX1 aXZ CZ at
(A-2)
9 pgd O O
Iy 9y, 0z; 0z,
Components of Electric Field E.
Ex2=Exs
Ey2=y(Ey,—sz1) 3
E.= Y(Ezl - VBy1) (A-3)
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Force Transformations (v, = 0)

F F
Fxl = I:x2 Fy1 = %2 le = %2 (A-4)
Lorentz Transformations:
Xp= y(x1 - Vt1)
Ya=¥ and Z,=14 (A-5)

-» V e want to show that the equation of electric induction

VxB=L+l(E)

goc? 2\ ot

can be obtained from equations ( A-1, A-2, and A-3) and Coulomb’s law.

Choose that the density of charge p,, is stationary in frame 2, moves with
velocity v with respect to frame 1. Therefore in frame 2, the magnetic field B = 0.
From eqn. (A-1), we see thatp, =p/y.

Using Gauss’s law (vector form of Coulomb’s Law), V'E, = 1y/e, = 11/e,y, we
can write in cartesian coordinates,
oE,, E)Ey2 . oE,, _ph

+
ox; dy; 0z Y&

Then from the transformation equations (A-2) for derivatives and from (A-3) for
E components, we can find the field in frame 1,

2
2l ot dy Iz | | g

We can replace the first term using, V.Eq = py/e,, which cancels the next to last
term, and then divide by v to get,

1(0E. ) (0B 9By | LV

2\ ot ay dz P CZSO
The term in brackets is the x component of curl B;= V x B;. Corresponding
terms for the y and z components can be obtained by rotating indices. Adding

g::

How to Derive
Maxwell’s Curl

B Equation

|
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all three components, replacing p;v by its equivalent J,, dropping the subscript,
1, and rearranging terms, we obtain

VXB=¢+1(8_E]
C

goc? 2\ ot

which is what we sought to show. QED.

e want to show that Maxwell’s rule for magnetic induction of electric

How to Derive fields by changing magnetic fields
Maxwell’s Curl
E Equation UxEL {_ B ]

is a result of Coulomb’s Law and the relativistic transformations (A-1, A-2, and
A-3). That is, one need not use the notion of the magnetic field B or Maxwell’s
equation as the origin of the induced E field. N

Choose two charges Q. and Qp,, moving in reference frame 2 at the same velocity
v with respect to frame 1. Q. is at the origin and Q,, is at the point (xy, y,, 0). Viewed
by an observer in frame 2, the charges are affected only by each other’s Coulomb
forces of attraction and repulsion; There are no magnetic fields present.

When viewed from frame 1 which can be our laboratory, one of the
moving charges, say Q, is classically regarded as a current which produces a
magnetic field B. The other charge Q, will be affected by the magnetic field of
moving Q. according to the usual magnetic force rule,

F=Qp(vxB) [
We want to get this result without using Maxwell’s equation, by determining
that the magnetic field B can be obtained from Coulombs law and the
relativistic transformations. 1

Begin by writing the forces on Q, due to Q. using Coulomb’s law é_s}-l
observed in frame 2,

F,= Qch

3
4nr2

(Xz + )’2)

where x, and y, are the vectors of position. Then, transform the components of

this force to frame 1, using force transformations (A-4), r
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F,,=0

We must also transform the lengths x, and y, into frame 1 at t; = 0 using the
Lorentz transformations (A-S). Then, rearranging, and bringing (y)2 = 1-v2/c2
into the numerator, one gets,

\
F. = YQch b4 (1 _ V_Z
4 AR
4nso(yzx12 + yf) /
and
E.= YQch X1
x1 y
4neo(yzx12 + yf) g

These two terms can be combined into a term with the force pointed along the
radial vector r; = X; + y1, between charges, plus a vector product term with the
velocity, pointed in the z direction,

|:1 ! Qm YQC N y + Qm v YQCVY1k y
41teo(yzx12 + yf) 2 4neoc2(yzx12 + yf) :

The first term is the ordinary Coulomb force between the charges, and the
second term may be recognized as the magnetic force = Q (v x B). The magnetic
field B is the result of the apparent current (Q.)v arising from the relative
velocity v of the observer and the charge Q.. The constants in the denominator
are identified as the inverse of the usual magnetic force constant pg =1/4neqc2.

We have obtained the magnetic force law from Coulomb’s law and
relativity which is what we sought to show.
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