re 6-16. Gauss’s law applies to a
ing charge: the surface integral of
aluated over the fixed sphere gives
, as if the charge were stationary.
excess F near § = w/2 is just
pensated by the weak field near

0 and @ = . See Figures 6-9 and

by the surface .S, and using the
form of Gauss’s law:
e

(6-117)

0

the surface S.

law by integrating the flux of E
encloses the charge Q at a given
ne 1. The charge passes through
6.
osing ¢ equal to zero. Then

oy (6-118)
WW’ (6-119)
W’ (6-120)

(6-121)

E of point charges moving at

, when we checked our transforma-
ite capacitor, we used Gauss’s law
E, to E,. We were therefore assum-
ally well to stationary and mobile
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6.9 THE DIVERGENCE OF B

The divergence of B is quite easy to calculate from Eq. 6-34:

4rr ay [,Yz(x — ’Ot)2 + yz + 22]8/2

+5 ([72(x SR 22]3f'2>} (6-122)

_kvQU [ 3yz  3yz | _ .
T 4 {[ ]5/2 [ ]5/2} 0, (6 123)

where we have set
[ ]=[v¥x— 02+ y* + 2% (6-124)
This is the second of Maxwell’s equations:

V-B=20 <« (6-125)

or, using the divergence theorem,

/SB-da = 0. & (6-126)

Intuitively, it is quite obvious that the divergence of B should be zero:
since the lines of B are circles centered on the path of the moving charge,
which is the x-axis in Figures 6-9 and 6-10, the total flux of B flowing out of
any imaginary volume must be zero. This is a general result: the divergence of
B is always zero.

6.10 THE CURL OF E

There is a third Maxwell equation, which is stated as follows:

VXE= —‘Z’t’, ——  (6127)

or, using Stokes’s theorem,

95E.dl= 0 [ Bda=-9 | & 129
c ot Js ot
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where S is any surface bounded by the curve C, and where & is the magnetic

flux linking the curve C.
Let us verify Eq. 6-127 by substituting the values of E and B from

Eqgs. 6-33 and 6-34:

i j k
d a9 9
VXE-= ax 3y 9z (6-129)
E. E, E,
) 4
ox-Z G r s e
dx—0 0
@ x B, =12 (0T~ e e
3 — 0 3 2 —
= 417% - ()E ]mt)z + ([x 35/?02}’ (6-132)
ey e
9 9 x —
(VXE),= ZTQGO ax [ y]s/z - 5}—,? ];(/3;}, (6-134)
Iy x — 3 —
_ ZTQGO Y ([x ]5/':)1‘))1 + (’E ];(/);)y}’ (6-135)
3 u—
e} o
while
%_? _ #0’1;1?’0 3y r(E(x];z V1) (—zj + yk). (6-137)

We can see that Eq. 6-127 is satisfied since
L=y = =Bt = —(V/", (6-138)

This is again a general result: the curl of E is always equal to minus the
time derivative of B. You should be able to show that this is in agreement
with the expression for E in terms of ¥ and 4, which we found in Section 6.5.

6.11 THE CURL OF B

The fourth and last of Maxwell’s equations is the following:

From: Lorrain & Corson, Electromagnetic Fields And Waves, 2nd ed., 1970, W. H. Freeman and Company
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C, and where @ is the magnetic .
VXB=y (Jm + € —a—t)’ < (6-139)

3 the values of E and B from

where J. is the current density at the point P, where the electric field intensity
is E and the magnetic induction is B, or

(6-129)
9SB-dl - uo/ (J,,, F o ‘E> cda = o, | < E140)
C S at
9 _yﬁ} =0, (6-130) The meaning of the index m, for matter, will become apparent later in this
ozl ] section. Let us disregard it for the moment. The current I, is the total current
9z } 6131) linking the curve C.
ax[ ¥ ’ We shall be able to deduce this equation from the fact that Gauss’s law
Y is invariant under a Lorentz transformation.
‘4 ——[—]5—2—}’ (6-132) Charges that are stationary at P in reference frame 1, in which E and B
are measured, contribute nothing to V X B. Let us disregard them. Imagine
— l)z}’ (6-133) that the density of moving charges at P is p and that these charges move at a
velocity Vi. Then
8 x— ’Ot}’ (6-134) J = pUi. (6-141)
ay [ 7 We have chosen the x-axis in the direction of J at P.

[3)4 + w}, (6-135) In reference frame 2, which follows these charges, J;, = 0, and we have a

[ ] charge density
p
= 6-142
b (6-136) p="t 614
from Eq. 5-116. In frame 2, B = 0, and the only information we have about
) E, is Gauss’s law:
“(—2j + yk). (6-137) VB b, 6143
€o Yeéo
or
9 9 S g _P,
(0/c) . (6-138) o, B T n By + 5 B = pos (6-144)

f E is always equal to minus the
> show that this is in agreement
4, which we found in Section 6.5.

We can deduce an equation for the field in frame 1 by using the equations
of transformation of Table 5-10 for the partial derivatives, and those of
Table 6-1 for the components of E:

ox T ¢t

E4 V%% _ o, (9B, 0B\ _ (1)
VEY G — 0 (ay 32) TP (6-146)

¥ (a + N a) E, + 75‘9}-)(13,, — UB,) + v(—%(E, + VB,) = p/ves, (6-145)

is the following:
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Table 6-3. Maxwell’s Equations

Differential Form Integral Form
vV.E="2 / E-da = 2
€ S €
V.:B=0 / B:da=0
s
OB d %
V = —_—— . = —_—— . = ——
X E a1 éE dl 6t[gB da Y
1 0E JE
V —_——— = . = —_— . =
X B c2 at #UJm éB dl #o/:s (Jm + € 6t> da Molg

We have again omitted the subscripts 1. But Gauss’s law also applies in
frame 1, and V-E = p/¢. Then, dividing by U,

19E, (aB, aB,,)

2ot \dy az

_m_
60C2 6002

= —pol. (6-147)

We have arrived at this equation by postulating that the current density
vector J was directed along the x-axis. In the more general case where J has
three components, we have two other equations that can be deduced from
this one by rotating the indices. Combining the three,

1 o0E

VXB~- 2o tofm- (6-148)

Since the exact nature of the current is immaterial, we have added a
subscript m on J to indicate that it represents any type of current in matter.
For example, in a lossy dielectric, J,, is the sum of the conduction current
density J; plus the polarization current density 3P/dz.

6.12 MAXWELL’S EQUATIONS |

Maxwell’s equations are grouped together in Table 6-3. You will be able to
show (Problem 6-18) that they are invariant under a Lorentz transformation.

These are the four fundamental equations of electromagnetism. We shall
have many occasions to discuss them, and especially to use them, throughout
the remaining chapters. We shall not therefore say more about them for the
moment.
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