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Introduction 
 

 

We develop a set of equations which describes the motion of a triangle and a vertex of 

the Jitterbug.  The Jitterbug starts in the “opened” position of a Cuboctahedron (also 

called the Vector Equilibrium or VE) with 8 triangle faces, 6 square faces, and 12 

vertices, and  “closes” into an Octahedron position with 8 triangle faces and 6 vertices.  

(See Figure #1.)   

 

The Jitterbug motion is visually complex but simple when you focus only on the motion 

of one of the 8 triangles.    The motion of a triangle is simply a radial displacement plus a 

rotation around the radial displacement vector.  Because the triangular faces do not 

change size as they move radially and rotate, the 3 vertices of a triangle are always on the 

surface of a cylinder.  (See Figure #2.)  The cylinder is axially aligned with the 

displacement vector.  That is, with a line passing through the Octahedron’s (and VE’s) 

center of volume out through the triangle’s face center point.  There are 4 axes of rotation 

(two opposite triangular faces per axis) so there are 4 fixed cylinders within which the 

triangles move. 

 

The reason that the motion appears complex is because the Jitterbug is often 

demonstrated by holding the “top” and “bottom” triangles fixed while pumping the 

model.  This causes the remaining 6 triangles to move radially in and out, rotate and orbit 

about the “up” and “down” pumping axis.  By allowing all 8 triangles to move in the 

same way, that is, not fixing any of the 8 triangles, the motion is simplified. 
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Figure #1 Jitterbug Motion 
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Figure #2 Jitterbug Motion within cylinders. 
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Development of Vertex Motion Equations 
 

 

We first note that since the 8 triangles of the Jitterbug during its motion do not change 

size, and since they move radially as they rotate, the 3 vertices of any of the 8 triangles 

are constrained to move on the surface of a cylinder. 

 

Second, from the symmetry of the Octahedron and the Jitterbug, each of the vertices of 

the Jitterbug is constrained to move in a plane.  This can be seen in Figure #2.   

 

Thirdly, a plane cutting through a cylinder defines an ellipse.    

 

Therefore, each of the vertices of the Jitterbug traverses a portion of an ellipse.   

 

 
Figure #3 Path of a vertex 

 

In Figure #3 we can see a portion of this ellipse as well as one triangle of the Jitterbug in 

the Octahedron and the VE position.   The ellipse shown is in the YZ-plane.  The 

surrounding cylinder is along the V-axis. 

 

Note that since the Octahedron is centered at (0, 0, 0) then so too is the ellipse. 
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The equation of an ellipse, centered at the coordinate origin (0, 0, 0), is given by 

 
1

a
Z

b
Y

2

2

2

2

=+
 

where a = semimajor axis length and b = semiminor axis length. 

 
Figure #4 Semimajor and semiminor axes lengths 

 

From Figure #3, we see that the semimajor axis length, from the coordinate origin to the 

vertex of the VE positioned triangle, is the edge length of the Tetrahedron (and of the 

VE) defined by the VE triangle and the center of volume.  This length is given by 

 a = EL 

Note that since the ellipse is defined on the surface of the cylinder, then the ellipse width 

must match the cylinder diameter.  This means that the semiminor axis length is just the 

radius of the cylinder, which is the distance from the face center of a triangle to its vertex 

EL
3

1b =
 

We can now write the equation for the ellipse which a vertex of the Jitterbug will follow. 

(1) 

1
EL
Z

EL
3
1
Y

2

2

2

2

=+

 

where EL is the edge length of the Octahedron, which is also the edge length of the VE. 

 

The eccentricity of an ellipse is defined by the equation 
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2

a
b1e −=

 
Using the above values for a and b: 

a = EL 

EL
3

1b =
 

 we get  

 b2 / a2 = (1/3) / 1 = 1/3 

so that  

81649658.0
3
2

3
11e ≅=−=

 
The coordinates for the 2 focus points are (0, ae) and (0, –ae) in the YZ-plane.  These 

evaluate to 

( )EL0.816496580.0,
3
2

0, ≅










  
and   

 
( )EL0.816496580.0,

3
2

0, −≅









−

 
 

The usual motion of the Jitterbug consists of the vertices moving from the Octahedron to 

the VE position and back to the Octahedron position.  Then only a portion of the ellipse is 

traversed by the vertices. 

 
Figure #5 Jitterbug portion of ellipse 
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Figure #6 Orientation of the axes 

 

Figure #6 shows the various axes and their orientations used in the following derivations.  

 

It is important to note that there are two axes of rotations used in the derivations.  The 

first axis is the V-axis shown in Figure #3 and Figure #6.  It is the axis about which the 

Jitterbug triangle rotates.  The second axis is the X-axis of Figure #6 and Figure #7.  The 

X-axis rotates the ellipse radius (labeled “r” in Figure #7) around the ellipse.    It is 

important to note that an angular of rotation γ about the V-axis does not equal the same 

angular amount of rotation θ about the X-axis.  

γ ≠ θ 

 

 
Figure #7 Orientation of ellipse and cylinder 
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We will shortly derive relations which will let us convert a Jitterbug’s triangle angular 

rotation γ from the ellipse radius sweep angle θ and visa versa. 

 

(Note that I am using the term ellipse “radius” very loosely here.  The ellipse does not 

have a radius.  However, the word “radius” makes it easy to refer to a line segments with 

one end at the coordinate origin and the other end on the perimeter of the ellipse.) 

 

Considering Figure #7, we have defined the ellipse to be in the YZ-plane.  The cylinder 

has its axial symmetry axis along the V axis and the W axis of the cylinder is 

perpendicular to the V and to the Y axes.  The left side of Figure #7 is rotated about the Z 

axis to get the right side of the Figure. 

 

Note that both coordinate systems (X, Y, Z) and (W, Y, V) share the same Y-axis. 

 

We now want to calculate the Z and Y component of the  ellipse radius r, which has been 

rotated by the angular amount θ about the X-axis (so it remains in the YZ-plane.) 

 

From the ellipse equation above, we can write 

(2) 3Y2 + Z2 = EL2 

We note that 

 r2 = Y2 + Z2 

and that 

 r cos(θ) = Z 

so  

 r2 = Z2 / cos2(θ) 

This gives the equation 

 Y2 + Z2 = Z2 / cos2(θ)  

 Y2 = Z2 / cos2(θ) − Z2  

Using this in equation (2) and solving for Z2, we get 

3Z2 / cos2(θ) − 3Z2 + Z2 = EL2     
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( )
( )θcos23
θcosELZ
2−

=
 

 

Using  this equation and equation (2), we can solve for Y 

( )
( )θcos23

θsinELY
2−

=
 

   

We need a relation relating θ to γ which is the angular amount a triangle is rotated about 

the V-axis. 

 

The angle which the YZ-plane makes with the V axis  is labeled α in Figure #3.  This is 

the half-cone angle of the Tetrahedron in the VE.   This angle is known to be  











=

3
2

arccosα
 

which makes the angle β  (see Figure #3) 

o73561032.54
3
2

arcsinβ ≅









=

 
We then have  

 
( )

3
2

βsin =
 

 
( )

3
1βcos =

 
Now, 

W = Z cos(β) 

Using this in equation (2) we get 

(2) 3Y2 + Z2 = EL2 

 Y2 = (1/3)EL2 – W2   

With 

 tan(γ) = Y/W   

so that 
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tan2(γ) = Y2/W2   

 we get 

( ) 1
3W
EL

W

WEL
3
1

γtan 2

2

2

22

2 −=
−

=
 

 
( ) ( )

( )
( )

( )θcos
θ3cos31

θ3cos
θ6cos9γtan 2

2

2

2
2 −

=−
−

=
 

 

( ) ( )θtan3γtan 22 =  

( ) ( )θtan3γtan =  
 

We can use a trigonometric identity  

tan2(A) = (1/cos2(A)) – 1  

to rewrite this as 

(1 / cos2(γ)) – 1 = 3( (1 / cos2(θ)) – 1 ) 

(1 / cos2(γ)) – 1 = (3 / cos2(θ)) – 3 

1 / cos2(γ) = (3 / cos2(θ)) – 2 

1 / cos2(γ) = (3 / cos2(θ)) – 2 cos2(θ) / cos2(θ) 

1 / cos2(γ) = (3 – 2 cos2(θ)) / cos2(θ) 

 cos2(γ) = cos2(θ) / (3 – 2 cos2(θ)) 

 
( ) ( )

( )θcos23
θcosγcos

2−
=

 
Solving for cos(θ), we get 

( ) ( )
( )γcos21

γcos3
θcos

2+
=

 
We can then write Z as a function of the Jitterbug rotation angle γ 

( )
( )θcos23
θcosELZ
2−

=
 

( )
( )θcos23
θcosELZ 2

22
2

−
=
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( )

( )( ) ( )
( ) 
















+

−+

=

γcos21
γcos323γcos21

γcos3ELZ

2

2
2

2
22

 

( )
( )( ) ( )γcos6γcos213

γcos3ELZ 22

2
22

−+
=

 

( )γcosELZ 222 =  

( )γcosELZ =  
 

We now calculate the position of the Jitterbug triangle along the V-axis.  This is the axis 

around which a single triangle rotates and moves radially. 

 

From Figure #7 we have 

 V = Z sin(β) 

Which means 

(3) 
( )γcosEL

3
2

V =
 

This equation gives the distance that the Jitterbug triangle is from the center of volume as 

it rotates around the V-axis.  The angular range is – 60° ≤ γ ≤ 60°, with γ = – 60° is one 

Octahedron position, γ = 0° is the VE position and γ = 60° is the other Octahedron 

position. 
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The Jitterbug Ellipses 
 

In Figure #8, the “Jitterbug portion” is the actual path that vertices will travel (direction 

of travel is not considered here.)  No vertex of the Jitterbug (when considering only the 

Octahedron to VE to Octahedron motion) traverses that portion of the ellipse curve which 

is within the “Square cross section of Octahedron” portion of the ellipse. (See Figure #8.)   

Later in this paper we will consider what happens if the vertices are allowed to move 

around the complete ellipse. 

 
Figure #8 Ellipse and Octahedron edges 

 

Figure #8 shows the complete ellipse in the YZ-plane with the usual Jitterbug vertex path 

portion of the ellipse marked.   In the following sections of this paper we will explore the 

consequences of allowing the vertices of the Jitterbug to orbit around the entire ellipse. 

 

Note that there are 2 diametrically opposite Jitterbug vertices per ellipse which travel in 

the same direction.   So there are two “Jitterbug portions” to the ellipse.  Since there are 

12 vertices to the Jitterbug (not in the Octahedron position) then there are 12/2 = 6 total 

ellipses for the Jitterbug.  
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Note that the angular range traversed by a vertex along the ellipse in the YZ-plane is  

– 45° ≤ θ ≤ 45° 

 

All four of the square’s edges in the ellipse of Figure #8 are Octahedron edges.  Each pair 

of opposite edges of the Octahedron is part of an ellipse.  Therefore, there are two 

orthogonal ellipses in the same plane.   Figure #9 shows both ellipses defined by the 

motion of 4 Jitterbug vertices.   

 

 

 
Figure #9  Two ellipse per plane 

 

Following only one vertex (one vertex of a rotating Jitterbug triangle) and with the 

Jitterbug in the Octahedron position, we label the initial vertex position “P1” .  This 

vertex will travel along the ellipse, passing through an Icosahedron position, to reach 

vertex position “P2”, the VE vertex position.  Then, with the Jitterbug triangle continuing 

to rotate in the same direction, the Jitterbug vertex passes through another Icosahedron 

vertex position to reach the Octahedron position “P3”.  (Further details relating the 

Jitterbug vertex position along the ellipse and various polyhedra are given below.)  Note 

that if the Jitterbug triangles were allowed to continue to rotate in the same direction then 
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the vertex now at vertex position “P3” would not proceed to vertex position “P4”. 

Instead, is leaves this plane to follow another ellipse. 

 

The Octahedron has 12 edges forming 6 opposite edge pairs.  So there are a total of 6 

ellipses to define the complete Jitterbug motion.  These 6 ellipses are show in Figure #10 

and Figure #11. 
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Figure #10 Six ellipses and Octahedron 

 

 

 
Figure #11 Six ellipses and the VE 
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It is well known, and as mentioned above, that the Jitterbug vertices pass through an 

Icosahedron position during its Jitterbug motion.  (See Figure #12.)  What is not well 

know is that the Jitterbug vertices also pass through a regular Dodecahedron position 

along the ellipses.  (See Figure #13.) 

 

 
 

 
Figure #12 Jitterbug in Icosahedron position 

 
Figure #13 Jitterbug in regular Dodecahedron position 
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Unlike the Jitterbug in the Icosahedron position, not all the vertices of the regular 

Dodecahedron are defined by one Jitterbug.  The Dodecahedron has 20 vertices.  The 

Jitterbug in the Dodecahedron position (as well as in the Icosahedron position) has only 

12 vertices.  To completely define all 20 vertices of the Dodecahedron in a symmetrical 

way requires 5 Jitterbugs.  This gives a total of 5 × 12 = 60 vertices.  When this is done, 

the pentagon faces of the Dodecahedron become pentagrams.  (It is possible to cover all 

the Dodecahedron vertices with 3 Jitterbugs but not in a symmetrical way.  That is, not in 

a way as to have each of the Dodecahedron’s vertices covered by the same number of 

Jitterbug vertices and each of the Dodecahedron’s faces containing the same number of 

Jitterbug triangle edges.) 

 

 
Figure #14 Symmetrical covering of Dodecahedron by 5 Jitterbugs 

 

(These 5 Jitterbugs are the basis for the 120 Polyhedron as explained in the paper 

“What’s in this Polyhedron?” which can be found at 

http://www.rwgrayprojects.com/Lynn/NCH/whatpoly.html) 

 

The Jitterbug in the VE position is shown in Figure #15. 
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Figure #15 Jitterbug in the VE position 

 

Because of the symmetry of the elliptical path about its semimajor axis, a Jitterbug vertex 

will pass through 2 Icosahedra and 2 regular Dodecahedra positions.   These are shown in 

Figure #16.  The vertex positions labeled “D,C,T”  stand for the “Dodecahedron, Cube, 

Tetrahedron” position.  (It is well known that 5 Cubes and 10 Tetrahedra share the same 

vertices as a regular Dodecahedron.)  The positions labeled “O” are the Octahedron 

positions, those labeled “I” are the Icosahedron positions, and those labeled “VE” are the 

VE positions. 

 

 
Figure #16 Polyhedra positions of the Jitterbug motion 
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We can calculate the angular amount γ that the Jitterbug triangle rotates from the VE 

(γ=0°) position into the Icosahedron position (γI). 

 

Starting with equation (3) 

(3) 
( )γcosEL

3
2

V =
 

we write 

(4) 
( )

EL2
V3

γcos =
 

 

Now, the distance from the center of volume to the face center of an Icosahedron’s 

triangle face is  

 
I

2
I ELτ

32
1DVF =

 
where 

 2
51

τ
+

=
 

Here, we have V = DVFI for equation (4). 

 

Since the size of the Icosahedron triangles are the same as the size of the Jitterbug 

triangles, we have  

ELI = EL 

Then equation (4) for the Icosahedron position of the Jitterbug becomes 

 
( )

32
τ

2
3

γcos
2

I =
 

( ) 925614793.0
22

τγcos
2

I ≅=
 

Which gives γI  ≅ 22.23875609°. 
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This means that the Jitterbug triangle is rotated by the angular amount  

°≅









= 922.2387560

22
τarccosγ

2

I

 
from the VE position (clockwise or counter clockwise) to be in the Icosahedron position. 

 

Note that the triangles of the Jitterbug are like gears in that if a triangle is rotated 

clockwise, then the 3 triangles attached to it must rotate counterclockwise. 

 

The corresponding angle in the YZ-plane through which the ellipse radius r must sweep 

through to get to the Icosahedron position can be obtained by using the equation (derived 

above) 

( ) ( )
( )γcos21

γcos3
θcos

2+
=

 

( ) ( )
( )γcos21
γcos3θcos 2

2
2

+
=

 

( )
8
τγcos

4

I
2 =

 

( ) ( )23τ28
τ3

τ28
τ3

8
τ21

8
τ3

θcos
4

4

4

4

4

I
2

++
=

+
=

+
=

 

( )
42τ

τθcos
4

I
2

+
=

 

( ) ...973248989.0
42τ

τθcos
2

I ≅
+

=
 

So,  

°≅










+
= ...28252559.13

42τ
τarccosθ

2

I

 
which is the angle about the X-axis that the ellipse radius rotates to the Icosahedron 

position. 
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To calculate the angular rotation of the Jitterbug triangles for the regular Dodecahedron 

position, we first find the radial position of one of the Jitterbug’s triangles when in the 

Dodecahedron position.   

 

 
Figure #17 Three vertices of the Jitterbug and Dodecahedron 

 

Figure #17 shows 3 of the Jitterbug’s vertices coinciding with 3 of the Dodecahedron’s 

vertices.  It can be shown that these three vertices can be given the (x, y, z) coordinates 

 V1 = (0, − τ ,  τ 3 )  

V2 = (− τ 3, 0, τ)  

 V3 = (− τ , − τ 3, 0)  

where 2
51

τ
+

=
.   

 

Using these coordinates sets the Octahedron’s edge length.  In this case, the edge length 

of the Octahedron, calculated using the equation 

 τ n+1 = τ n  + τ n-1    

is 

 ELO = distance(V1, V2) = sqrt(τ 6 + τ 2 + (τ 3 − τ ) 2  ) 

 ELO = 2 τ 2 

Then, using τ 3 = τ 2 + τ  = τ  + 1 + τ =  2τ + 1, the center of the triangle face is at  
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 FC = (− (τ + 1/3),  − (τ + 1/3),  (τ + 1/3) ) 

which is a distance  

 ( )1/3τ3DVFDT +=   
from the center of volume. 

 

Again, using equation (4) 

(4) 
( )

EL2
V3

γcos =
 

with V = DVFDT and EL = ELO, we get 

( ) ( )( )
( )2D 22

3/133
γcos

τ
τ +

=
 

( ) ( )
2D τ22
3/13γcos +

=
τ

 
so that 

 

( )
°≅









 +
= 237.7612439

τ22
1/3τ3acosγ

2D

 
This is the angular amount that the Jitterbug triangle is rotated about the V-axis from the 

VE position to the Dodecahedron position. 

 

To get the angular amount the ellipse radius is rotated about the X-axis to get to the 

Dodecahedron position along the ellipse, we again use the equation 

( ) ( )
( )γcos21

γcos3
θcos

2+
=

 

( ) ( )
( )γcos21
γcos3θcos 2

2
2

+
=

 
With  

( ) 4

2

D
2

τ8
16ττ9γcos ++

=
 

we get 
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( )







 ++
+








 ++

=

4

2

4

2

D
2

τ8
16ττ921

τ8
16ττ93

θcos

 
 

 

( ) ( )
22τ1τ18τ8

1τ69τ3θcos 24

2

D
2

+++
++

=
 

( )
12τ18

1015τθcos D
2

+
+

=
 

( ) ...912870929.0
6
5

θcos D ≅=
 

So, the rotation about the X-axis which sweeps the ellipse radius to the Dodecahedron 

position is  

°≅









= ...09484255.24

6
5

arccosθD
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Sub-Octahedron Zone 
 

As mentioned above, with physical, solid triangles, a Jitterbug’s vertex does not follow 

the complete path of an ellipse.   We now remove this constraint and let the vertices 

travel along the complete elliptical path.  There are then two alternatives for Jitterbug 

triangle motion: 

1) When the Jitterbug triangle reaches the Octahedron position (from the VE 

position) they continue to rotate in the same direction, reverse their radial 

direction of motion, and change size as the vertices traverse the sub-

Octahedron zone of one of the 6 ellipses, 

2) When the Jitterbug triangle reaches the Octahedron position (from the VE 

position) they continue to rotate in the same direction, continue to move in the 

same radial direction (toward the center of volume), and do not change size.  

 
Figure #18 The sub-Octahedron Zone of ellipse 

 

We consider the first case here.  In the next section we consider the second case. 

 

Beginning in the Octahedron position, the vertices are now to travel within the sub-

Octahedron zone of the 6 ellipses of the Jitterbug.  As shown in Figure #19, each of the 

Octahedron’s vertices split into 2 vertices and the diametrically opposite vertices, on the 

same ellipse, travel in the same direction.   
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Figure #19 Jitterbug through sub-Octahedron zone 

 

 

 
Figure #18 Triangle vertices switch ellipses 
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Note that the 3 vertices of a triangle have switched ellipses.  That is, in going from the 

original VE position to the original Octahedron position, a vertex of a triangle follows a 

particular ellipse.  For the triangle to continue to rotate and to remain on some elliptical 

path,  the vertex of the triangle switches to one of the other 3 ellipses which pass through 

the same Octahedron vertex position.  The vertex, having switched, can now travel along 

the sub-Octahedron zone portion of an ellipse.   

 

Figure #20 shows one triangle of the Jitterbug’s triangles with its 3 vertices on ellipses 1, 

3, and 6.  Once the triangle is in the Octahedron position, the vertices switch to follow 

along ellipses 5, 2, 4, respectively.  

 

In order to accomplish this motion, the Jitterbug triangles move radially, rotate and 

change scale.  This scale change is unlike the motion of the original Jitterbug motion 

describe previously. 

 

In one sub-Octahedron zone position it is seen that the Jitterbug forms another, smaller 

VE.  (See Figure #19.)  Being another VE configuration, we can draw another pair of 

smaller ellipses within the original ellipses.  This construction of another sub-VE  within 

the original VE by following the ellipse paths can be continued to form sub-sub-VEs, etc. 

and therefore sub-sub-Jitterbugs. 

 
Figure #21 First sub-Jitterbug ellipses 
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As Figure #21 shows, the Octahedron vertex at P1 is moved to position P2 along the sub-

Octahedron zone of the original ellipse.  Again, this is not part of the normal Jitterbug  

motion and is accomplished by a continuous change in scale of the triangles.  From P2, a 

sub-VE position, the vertex may either continue along the original ellipse or it may 

smoothly switch to the smaller embedded ellipse and move to P3.  P3 is a sub-

Octahedron vertex position.  The motion from P2 to P3 is a normal Jitterbug motion, i.e. 

without scaling.  

 

As before, we can map out the various polyhedra positions of the Jitterbug motion as its 

vertices traverse the sub-Octahedron zone.  This is shown in Figure #22 and Figure #23. 

 
Figure #22 One Dodecahedron, Icosahedron and VE position 

within sub-Octahedron Zone of ellipse 
 

 
Figure #23 Dodecahedron, Icosahedron and VE positions 
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From the original, large VE, (maximum radial distance from the center of volume) a 

triangle will move radially inward and rotate to the original, large Octahedron position.  

To then move to the sub-VE position, the triangle must reverse its radial direction (it 

moves radially outward) rotate (in either the same direction or opposite direction) and 

change scale (shrink in size.) 

 

The path that a vertex will follow in the sub-Octahedron zone of the YZ-plane is just the 

edge of the original ellipse rotated 90 degrees.  See, for example Figures #19 and #21 

which show the 2 ellipses in the same YZ-plane, one rotated 90 degrees to the other. 

 

The equation for the rotated ellipse in the YZ-plane is  

1
EL
Y

EL
3
1
Z

2

2

2

2

=+

 
From which we get 

 Y2 = EL2 – 3Z2 

Now,  

 r2 = Y2 + Z2 

as well as  

 r cos(θ) = Z 

 r2 = Z2 / cos2(θ) 

Combining these equations gives 

( )
22

2

2

2ZEL
θcos

Z
−=

 
Z2 (1 + 2cos2(θ)) = EL2 cos2(θ) 

( )
( )θcos21
θcosELZ
2+

=
 

To write this in terms of the angular rotation of the Jitterbug triangle γ, we again use 

( ) ( )
( )γcos21

γcos3
θcos

2+
=

 

Jitterbug Motion  Robert W. Gray 
Copyright Sept. 2002  rwgray@rwgrayprojects.com 

28



 

( )

( )( ) ( )
( ) 
















+

++

=

γcos21
γcos321γcos21

ELγcos3Z

2

2
2

22
2

 

( )
( ) ( )γcos6γcos21

ELγcos3Z 22

22
2

++
=

 
 

( )
( )γcos81

ELγcos3
Z

2+
=

 
 

As before, the radial position of the Jitterbug triangle (which moves radially along the V-

axis) is given by 

V  = Z sin(β) 

And since  

( )
3
2

βsin =
 

we have 

( )
( )γcos81

ELγcos2
V

2+
=

 
 

where the angular range is now −60° ≤ γ ≤ 60° about the V-axis. 

 

When the triangle is rotating from the original Octahedron position to the sub-VE 

position, the scale of the triangle is decreased.  When the triangle further rotates from the 

sub-VE position to the second Octahedron position, the scale of the triangle increases 

back to its original size. 

 

We now determine an equation for these scale changes. 

 

The Scale Factor by which the original sized Jitterbug is reduced is given by the equation 
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( )
ODFV
γDFVSF =

  
where DFV(γ) is the Distance from the triangle’s Face center to its Vertex, which is now 

changing as a function of the angular amount the triangle is rotating γ.  DFVO is the 

original Octahedron’s Distance from the triangle’s Face center to its Vertex.  Since 

DFVO = EL / sqrt(3), we have 

( )
EL

3
γDFVSF =

 
We have  

DFV(γ)2 = W2 + Y2 

Now,  

 W = Z cos(β) 

and cos(β) = 1 / sqrt(3), so 

 

( )
( )γcos81
ELγcosW 2

22
2

+
=

 
Using Y2 = EL2 – 3Z2 from above, we get 

( ) ( )
( )

( )
( )γcos81
ELγcos9EL

γcos81
ELγcosγDFV 2

22
2

2

22
2

+
−+

+
=

 

( ) ( )γcos81
ELγDFV 2

2
2

+
=

 
or 

( )
( )γcos81

ELγDFV
2+

=
 

The Scale Factor equation then becomes 

( )γcos81

3
SF

2+
=

 
 

At γ = 0°, which is the sub-VE position, the Jitterbug is reduced by a factor of 

577350269.0
3
1SFVE ≅=
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An alternative calculation for the sub-VE position can be calculated by noting  that 

position P2 is at the semiminor axis position of the larger ellipse and is the semimajor 

axis position of the smaller ellipse.  Therefore, the Jitterbug in the sub-VE position is 

reduced by the  scale factor (SF)   

 SFVE =  small ellipse semimajor axis  /  large semimajor axis 

 = large ellipse semiminor axis  /  large semimajor axis  

 EL
EL

3
1

=
  

577350269.0
3
1SFVE ≅=

 
 

The Scale Factor for the Dodecahedron position of the Jitterbug is now calculated. 

 

Recall that the angle of rotation of the Jitterbug triangle for the Dodecahedron position is 

( )
°≅









 +
= 237.7612439

τ22
1/3τ3acosγ

2D

 
so 

 
( ) ( )

22D τ22
1τ3

τ22
1/3τ3γcos +

=
+

=
 

and 

( ) 4D
2

τ8
10τ15γcos +

=
 

Then 








 +
+

=

4

D

τ8
10τ1581

3
SF

 
It can be shown that τ4 = 3τ + 2, so we get 
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







+
+

+

=

2τ3
2τ351

3
SFD

 
 

707106781.0
2
1SFD ≅=

 
 

Now for the Icosahedron’s scale factor.   

 

We know that the rotation angle for the Icosahedron position is 

°≅









= 922.2387560

22
τarccosγ

2

I

 
so that 

 
( )

22
τγcos

2

I =
 

( )
8
τγcos

4

I
2 =

 
Then 









+

=

8
τ81

3
SF

4I

 

23τ1
3

SFI ++
=

 

1τ
1SFI +

=
 

And with τ2 = τ + 1, we get 

 SFI = 1 / τ ≅ 0.618033988…. 
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Alternative Sub-Octahedron Zone Motion 
 

 

There is another way for the vertices of the original sized Jitterbug to traverse the sub-

Octahedron zone portion of the ellipse.  With this alternative method the triangles do not 

change scale and they continue to move radially inward.  This can be accomplished by 

allowing the triangles to interpenetrate one another.  See Figure #24.   Note that the 

triangles’ vertices are still paired.  That is, the triangles are still joined together. 

 

As Figure #24 shows, the same sequence of polyhedra (Dodecahedron, Icosahedron, VE) 

occur as in the previous case. 

 

When the vertices are in the VE position, the 8 Jitterbug triangles all have their face 

centers at the coordinate origin (0, 0, 0). 

 

For the vertices of the Jitterbug to traverse the sub-Octahedron zone (starting from the 

“closed” Octahedron position), the triangles rotate an additional 30 degrees (about the V-

axis) to the sub-VE position and another 30 degrees from the sub-VE  to the second 

original Octahedron position.  From the Octahedron to sub-VE position, the triangles 

move radially inward a distance of   

EL
6

1DVFO =
 

which places all 8 triangles of the Jitterbug at the coordinate origin (0,0,0).  From the 

sub-VE position to the  second original Octahedron position, the triangles have passed 

through the coordinate origin and have moved outward a distance of DVFO. 

 

Note that these rotations are half that of the original Jitterbug motion (the non-sub-

Octahedron zone motions) but that the total radial displacement from the original 

Octahedron to sub-VE  position is the same as the total radial displacement from the 

original Octahedron to the original VE position. 
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Figure #24 Triangles are allowed to interpenetrate 
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We now develop equations for the vertex motion along the sub-Octahedron zone. 

 

 
Figure 25 Orientation of ellipse and axes 

 

We have already developed the equation for the distance along the V-axis to the location 

of the Jitterbug triangles.  

(3) 
( )γcosEL

3
2

V =
 

where, for this case the angular range is 60° ≤ γ ≤ 120° with the Octahedron position 

occurring at γ = 60°, the sub-VE position occurring at γ = 90° and the second Octahedron 

position occurring at γ = 120°.   (If the triangle were rotating in the opposite direction 

then the angular range would be − 60° ≤ γ ≤ − 120°.) 

 

Now, the angular positions of the Dodecahedron and the Icosahedron for the sub-

Octahedron zone can be calculated as follows.   

 

Consider the Dodecahedron in Figure #26.  We see that the rotation angle θDSO in the YZ-

plane of the ellipse radius to the Dodecahedron position in the sub-Octahedron zone is 

θDSO = 90° − θD 
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Figure #26 Angle for sub-Octahedron zone Dodecahedron position 

 

From the original Jitterbug motion calculations, we know that  

°≅









= ...09484255.24

6
5

arccosθD

 
so 

( )
6
5

θcos D =
 

and 

( )
6

1θsin D =
 

which means 

cos(θDSO) = cos(90° − θD) = cos(90°)cos(θD) + sin(90°)sin(θD) 

 cos(θDSO) = sin(θD) 

Therefore  

 
( )

6
1θcos DSO =

 

°≅









= ...90515745.65

6
1arccosθDSO

 
Then, using the equation derived previously,  
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( ) ( )
( )θcos23

θcosγcos
2−

=
 

we get 

( )
218

1

6
236

1γcos DSO −
=

−
=

 
 cos(γDSO) = 1/4 

which means that  

 γDSO = arccos(1/4)  ≅ 75.52248781…° 

This is the angular amount the triangle is rotated about the V-axis to be positioned into 

the first sub-Dodecahedron position along the sub-Octahedron zone of the ellipse. 

 

For the Icosahedron position, we know that  

°≅










+
= ...28252559.13

42τ
τarccosθ

2

I

 

( )
42τ

τθcos
2

I +
=

 
which means that 

( )
42τ
2τ

θsin I +

+−
=

 
Then with 

cos(θISO) = cos(90° − θI) = sin(θI) 

we have 

( )
42τ
2τ

θcos ISO +

+−
=

 

°≅










+

+−
= ...71747442.76

42τ
2τ

arccosθ ISO

 
Using  

( ) ( )
( )θcos23

θcosγcos
2−

=
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we get 

( )









+
+−

−
+

+−
=

42τ
2τ23

1
42τ
2τ

γcos ISO

 
 

( )
( ) ( ) 4τ2126τ

2τ
2τ242τ3

2τ
γcos ISO −++

+−
=

+−−+

+−
=

 

( )
88τ
2τ

γcos ISO +

+−
=

 

°≅










+

+−
= ...2387561.82

22τ2
2τ

arccosγ ISO

 
This is the angular amount that the Jitterbug triangle is rotated about the V-axis to 

position the triangle’s vertex at the first Icosahedron position along the sub-Octahedron 

zone of the ellipse. 

 

As with the previous case for the vertices traversing the sub-Octahedron zone of the 

ellipse, the Jitterbug (and polyhedra) is scaled.  The scale factors are the same as 

previously calculated for the previous case. However, in this case in which the triangles 

interpenetrate each other as the vertices traverse this portion of the ellipse, the scale of the 

triangles do not change.   
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Additional Comments 
 

 

The Jitterbug ellipse is such that it passes through 6 vertices of the combined odd-even 

FCC lattices. 

 
Figure 27 Ellipse in odd-even FCC combined lattice 

 

In Figure #27, the red is the even (vertex centered) FCC lattice and the purple is the odd 

(Octahedron centered) FCC lattice. 

 

Two Jitterbugs can not share the same triangular face and have their positions (location 

of center of volume)  fixed as they go through the Jitterbug motion.  If two Jitterbugs are 

to share the same triangle face then as the joined  Jitterbugs jitterbug, the positions of the 

Jitterbugs must move. 

 

As Fuller points out, when in the Octahedron position, it is possible to “twist” the 

Jitterbug  to make it collapse and lay flat.  It can then be folded into a Tetrahedron. 

 

There are many Jitterbugs, of various sizes, in the 120 Polyhedron.  The planes of the 

initial 5 Jitterbugs of the 120 Polyhedron align with the planes of the great circles of 

polyhedra rotational symmetries which define the 120 spherical triangles on a sphere. 
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Figure 28 Five Jitterbugs’ ellipse sets in the planes of 

15 Great Circles to define a 120 Polyhedron like structure 

 

One way to look at an ellipses on the surface of the surrounding cylinder is to recognize 

that the equation 

( )γcosEL
3
2

V =
 

is simply a cosine wave wrapped around the cylinder.  There are 3 such cosine waves 

wrapped onto the surface of a  Jitterbug cylinder corresponding to the 3 vertices of a 

Jitterbug triangle. 

 
Figure #29  Three Jitterbug ellipses on a cylinder 
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Summary 
 

 

The vertices of the Jitterbug triangles move on elliptical paths.    

There are 6 ellipses per Jitterbug.  These 6 ellipses define 3 planes, 2 ellipses per plane.  

The planes intersect each other at 90 degrees.  The 2 ellipses per plane intersect each 

other at  90 degrees. 

For the “normal” Jitterbug motion, based on physical, rigid mechanical models,  the 

vertices of the Jitterbug do not travel along the complete elliptical path. 

 

The equation for the Jitterbug ellipse is  

1
EL
Z

EL
3
1
Y

2

2

2

2

=+

 
The parametric form of the equation for the ellipse is given by 

( )
( )θcos23
θcosELZ
2−

=
 

( )
( )θcos23

θsinELY
2−

=
 

with 0° ≤ θ ≤ 360° is the angle of rotation of the ellipse “radius” about the X-axis. 

 

The semimajor axis is (EL = the edge length of the Jitterbug) 

 a = EL 

The semiminor axes is  

EL
3

1b =
. 

The eccentricity of the ellipse is  

81649658.0
3
2

e ≅=
. 

The coordinates for the 2 focus points in the (Y, Z) plane are  
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( )EL0.816496580.0,
3
2

0, ≅










  
and   

 
( )EL0.816496580.0,

3
2

0, −≅








−
  

The equations used to convert a rotation of the ellipse radius by the angle θ amount about 

the X-axis to the corresponding rotation of the triangle by the angle γ amount about the 

V-axis and visa versa are 

( ) ( )
( )θcos23

θcosγcos
2−

=
 

( ) ( )
( )γcos21

γcos3
θcos

2+
=

 
For the “normal” Jitterbug motion, −60° ≤ γ ≤ 60° with γ = −60° being the first 

Octahedron position, γ = 0° being the VE position, and γ = 60° being the second 

Octahedron position.  The corresponding YZ-plane rotation angles of the ellipse radius is 

−45° ≤ θ ≤ 45°. 

 

The radial position of the Jitterbug triangle with respect to its rotation about the V-axis is 

given by 

( )γcosEL
3
2

V =
 

 

As the Jitterbug moves from the VE position to the Octahedron position, the vertices pass 

through first an Icosahedron position and then a regular Dodecahedron position. 

 

The angular amount that a Jitterbug triangle is rotated (in either direction) from the VE 

position to the Icosahedron position: 

°≅









= 922.2387560

22
τarccosγ

2

I
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°≅










+
= ...28252559.13

42τ
τarccosθ

2

I

 
The angular amount that the Jitterbug triangle is rotated (in either direction) from the VE 

position to the Dodecahedron position: 

( )
°≅









 +
= 237.7612439

τ22
1/3τ3acosγ

2D

 

°≅









= ...09484255.24

6
5

arccosθD

 
 

By removing the constraint of fixed sized, impenetrable triangles, the vertices of the 

Jitterbug  can be made to travel along the “sub-Octahedron Zone” portion of the ellipse.   

There are then 2 different ways that the vertices can traverse this part of the ellipse 

1) By allowing the scale of the Jitterbug triangles to change, but still not 

allowing the triangles to interpenetrate each other, 

2) By allowing the Jitterbug triangles to interpenetrate each other without 

changing the size (scale) of the triangles. 

 

CASE 1: 

For this case, the radial distance of the triangles is given by the equation 

( )
( )γcos81

ELγcos2
V

2+
=

 
with −60° ≤ γ ≤ 60°. 

 

The Jitterbug triangles are scaled by the Scale Factor  

( )γcos81

3
SF

2+
=

 
For the VE position (γ = 0°) 

577350269.0
3
1SFVE ≅=

 
For the Dodecahedron position (γ = γD above) 
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707106781.0

2
1SFD ≅=

 
For the Icosahedron position (γ = γI above) 

SFI = 1 / τ ≅ 0.618033988…. 

 

CASE 2: 

For this case, the Jitterbug triangles interpenetrate but do not change scale.  

However, the corresponding polyhedra do change scale as in case 1 above. 

 

The radial position of the triangles is given by 

( )γcosEL
3
2

V =
 

where 60° ≤ γ ≤ 120° with the Octahedron position occurring at γ = 60°, the sub-

VE position occurring at γ = 90° and the second Octahedron position occurring at 

γ = 120°.   (If the triangle were rotating in the opposite direction then the angular 

range would be − 60° ≤ γ ≤ − 120°.) 

 

The Icosahedron position is at 

°≅










+

+−
= ...2387561.82

22τ2
2τ

arccosγ ISO

 

°≅










+

+−
= ...71747442.76

42τ
2τ

arccosθ ISO

 
 

The sub-Dodecahedron position is at 

γDSO = arccos(1/4)  ≅ 75.52248781…° 

°≅









= ...90515745.65

6
1arccosθDSO

 
The sub-VE position occurs at the angle 

 γVESO = 90° 

 θ VESO = 90° 
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