-	Tetrahedron	720°	$\frac{720^{\circ}}{720^{\circ}} = 1$ tetrahedron
	Octahedron	240° × 6 = 1440°	$\frac{1440^{\circ}}{720^{\circ}} = 2 \text{ tetrahedra}$
	Prism	240*×6=1440*	$\frac{1440^{\circ}}{720^{\circ}} = 2 \text{ tetrahedra}$
	Cube	270°×8=2160°	$\frac{2160^{\circ}}{720^{\circ}} = 3 \text{ totrahedra}$
	Icosabedron	500*×12=5600*	$\frac{3600^*}{720^*} = 5 \text{ tetrahedra}$
	Rhombic Dodecahedron	109*28' x 24 = 2628* 70*32' x 24 = 1692* 2628* x 1692* = 4520*	$\frac{4520^*}{720^*} = 6 \text{ tetrahedra}$
	Dodecahedron	524°×20=6480°	$\frac{6480^{\circ}}{720^{\circ}} = 9 \text{ tetrahedra}$
	Triacontahedron	180° × 60 = 10,800°	$\frac{10,800^\circ}{720^\circ} = 15 \text{ tetrahedra}$
\bigcirc	Two Frequency Regular Geodesic	180° × 80 = 14,400°	$\frac{14,400^{\circ}}{720^{\circ}} = 20$ tetrahedra = 5 × 2 ²
	Three Frequency Alternate Geodesic	20*×9=180* c 180*×180=32,400*	$\frac{52,400^{\circ}}{720^{\circ}} = 45 \text{ tetrahedra} = 5 \times 3^{2}$
\triangleleft	Four Frequency Triacon Geodesic	180°×240=43,200°	$\frac{45,200^{*}}{720^{*}} = 60 \text{ tetrahedra} = 15 \times 2^{2}$

Table 224.70A *Tetrahedral Mensuration Applied to Well-Known Polyhedra*. We discover that the sum of the angles around all vertexes of all solids is evenly divisible by the sum of the angles of a tetrahedron. The volumes of all solids may be expressed in tetrahedra.

Copyright © 1997 Estate of R. Buckminster Fuller