
 416.00  Tetrahedral Precession of Closest-Packed Spheres 

Fig. 416.01 

416.01  You will find, if you take two separate parallel sets of two tangent 
equiradius spheres and rotate the tangential axis of one pair one-quarter of a full 
circle, and then address this pair to the other pair in such a manner as to bring 
their respective intertangency valleys together, that the four now form a 
tetrahedron. (See Fig. B, illustration 416.01.) 

 416.02  If you next take two triangles, each made of three balls in closest 
packing, and twist one of the triangles 60 degrees around its center hole axis, the 
two triangular groups now may be nested into one another with the three spheres 
of one nesting in the three intersphere tangency valleys of the other. We now have 
six spheres in symmetrical closest packing, and they form the six vertexes of the 
octahedron. This twisting of one set to register it closepackedly with the other, is 
the first instance of two pairs internested to form the tetrahedron, and in the next 
case of the two triangles twisted to internestability as an octahedron, is called 
interprecessing of one set by its complementary set. 

 416.03  Two pairs of two-layer, seven-ball triangular sets of closestpacked 
spheres precess in a 60-degree twist to associate as the cube. (See Fig. A, 
illustration 416.01.) This 14-sphere cube is the minimum cube that may be stably 
produced by closest-packed spheres. While eight spheres temporarily may be 
tangentially glued into a cubical array with six square hole facades, they are not 
triangulated; ergo, are unstructured; ergo, as a cube are utterly unstable and will 
collapse; ergo, no eight-ball cube can be included in a structural hierarchy. 

 416.04  The two-frequency (three spheres to an edge), two-layer tetrahedron may 
also be formed into a cube through 90-degree interprecessional effect. (See Fig. 
A.) 

 417.00  Precession of Two Sets of 60 Closest-Packed Spheres 

Fig. 417.01 

417.01  Two identical sets of 60 spheres in closest packing precess in 90 degree 
action to form a seven-frequency, eight-ball-to-the-edge tetrahedron with a total 
of 120 spheres; exactly 100 spheres are on the outer shell, exactly 20 spheres are 
in theinner shell, and there is no sphere at the nucleus. This is the largest possible 
double-shelled tetrahedral aggregation of closest-packed spheres having no 
nuclear sphere. As long as it has the 20- sphere tetrahedron of the inner shell, it 
will never acquire a nucleus at any frequency. 



Fig. 416.01 Tetrahedral Precession of Closest Packed Spheres: 

A.  Two pairs of seven-ball, triangular sets of closest packed spheres precess in 60 
degree twist to associate as the cube. This 14-sphere cube is the minimum 
structural cube which may be produced by closest-packed spheres. Eight spheres 
will not close-pack as a cube and are utterly unstable. 

B.  When two sets of two tangent balls are self-interprecessed into closest packing, a 
half-circle inter- rotation effect occurs. The resulting figure is the tetrahedron. 

C.  The two-frequency (three-sphere-to-an-edge) square-centered tetrahedron may 
also be formed through one-quarter-circle precessional action. 
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Fig. 417.01 Precession of Two Sets of 60 Closest-Packed Spheres as Seven-Frequency 
Tetrahedron: Two identical sets of 60 spheres in closest packing precess in 90-degree 
action to form a seven-frequency, eight-ball-edged tetrahedron with a total of 120 
spheres, of which exactly 100 spheres are on the surface of the tetrahedron and 20 are 
inside but have no geometrical space accommodation for an equiradius nuclear sphere. 
The 120-sphere, nonnucleated tetrahedron is the largest possible double-shelled 
tetrahedral aggregation of closest-packed spheres having no nuclear sphere. 
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 417.02  The 120 spheres of this non-nuclear tetrahedron correspond to the 120 
basic triangles that describe unity on a sphere. They correspond to the 120 
identical right- spherical triangles that result from symmetrical subdividing of the 
20 identical, equilateral, equiangular triangles of either the spherical or planar-
faceted icosahedron accomplished by the most economical connectors from the 
icosahedron's 12 vertexes to the mid-edges of the opposite edges of their 
respective triangles, which connectors are inherently perpendicular to the edges 
and pass through one another at the equitriangles' center and divide each of the 
equilaterals into six similar right triangles. These 120 triangles constitute the 
highest common multiple of system surface division by a single module unit area, 
as these 30º , 60º , 90º triangles are not further divisible into identical parts. 

 417.03  When we first look at the two unprecessed 60-ball halves of the 120-
sphere tetrahedron, our eyes tend to be deceived. We tend to look at them "three-
dimensionally," i.e., in the terms of exclusively rectilinear and perpendicular 
symmetry of potential associability and closure upon one another. Thus we do not 
immediately see how we could bring two oblong quadrangular facets together 
with their long axes crossing one another at right angles. 

 417.04  Our sense of exclusively perpendicular approach to one another 
precludes our recognition that in 60-degree (versus 90-degree) coordination, these 
two sets precess in 60-degree angular convergence and not in parallel-edged 
congruence. This 60-degree convergence and divergence of mass-attracted 
associabilities is characteristic of the four- dimensional system. 

 418.00  Analogy of Closest Packing, Periodic Table, and Atomic Structure 

 418.01  The number of closest-packed spheres in any complete layer around any 
nuclear group of layers always terminates with the digit 2. First layer, 12; second, 
42; third, 92 . . . 162, 252, 362, and so on. The digit 2 is always preceded by a 
number that corresponds to the second power of the number of layers surrounding 
the nucleus. The third layer's number of 92 is comprised of the 3 multiplied by 
itself (i.e., 3 to the second power), which is 9, with the digit 2 as a suffix. 

 418.02  This third layer is the outermost of the symmetrically unique, nuclear-
system patterns and may be identified with the 92 unique, selfregenerative, 
chemical-element systems, and with the 92nd such element__ uranium. 



 418.03  The closest-sphere-packing system's first three layers of 12, 42, and 92 
add to 146, which is the number of neutrons in uranium__which has the highest 
nucleon population of all the self-regenerative chemical elements; these 146 
neutrons, plus the 92 unengaged mass-attracting protons of the outer layer, give 
the predominant uranium of 238 nucleons, from whose outer layer the excess two 
of each layer (which functions as a neutral axis of spin) can be disengaged without 
distorting the structural integrity of the symmetrical aggregate, which leaves the 
chain-reacting Uranium 236. 

 418.04  All the first 92 chemical elements are the finitely comprehensive set of 
purely abstract physical principles governing all the fundamental cases of 
dynamically symmetrical, vectorial geometries and their systematically self-
knotting, i.e., precessionally self-interfered, regenerative, inwardly shunting 
events. 

 418.05  The chemical elements are each unique pattern integrities formed by 
their self-knotting, inwardly precessing, periodically synchronized 
selfinterferences. Unique pattern evolvement constitutes elementality. What is 
unique about each of the 92 self- regenerative chemical elements is their 
nonrepetitive pattern evolvement, which terminates with the third layer of 92. 

 418.06  Independent of their isotopal variations of neutron content, the 92 self- 
regenerative chemical elements belong to the basic inventory of cosmic absolutes. 
The family of prime elements consists of 92 unique sets of from one to 92 
electron-proton counts inclusive, and no others. 

Next Section: 419.00 
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