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450.10  Great Circles of the Vector Equilibrium 
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450.11  Four Sets of Axes of Spin: The omni-equi-edged and radiused vector 
equilibrium is omnisymmetrical, having 12 vertexes, six square faces, eight 
triangular faces, and 24 edges for a total of 50 symmetrically positioned 
topological features. These four sets of unique topological aspects of the vector 
equilibrium provide four different sets of symmetrically positioned polar axes of 
spin to generate the 25 great circles of the vector equilibrium. The 25 great circles 
of the vector equilibrium are the equators of spin of the 25 axes of the 50 unique 
symmetrically positioned topological aspects of the vector equilibrium. 



Fig. 450.10 The 12 Great Circles of the Vector Equilibrium Constructed from 12 Folded 
Units (Shwon as Shaded). 
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Fig. 450.11A Axes of Rotation of Vector Equilibrium: 

A.  Rotation of vector equilibrium on axes through centers of opposite trianglar faces 
defines four equatorial great-circle planes. 

B.  Rotation of the vector equilibrium on axes through centers of opposite square 
faces defines three equatorial great-circle planes. 

C.  Rotation of vector equilibrium on axes through opposite vertexes defines six 
equatorial great-circle planes. 

D.  Rotation of the vector equilibrium on axes through centers of opposite edges 
defines twelve equatorial great-circle planes. 
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Fig. 450.11B Projection of 25 Great-Circle Planes in Vector Equilibrium Systems: The 
complete vector equilibrium system of 25 great-circle planes, shown as both a plane 
faced-figure and as the complete sphere (3 + 4 + 6 + 12 = 25). The heavy lines show the 
edges of the original 14-faced vector equilibrium. 
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 450.12  Six of the faces of the vector equilibrium are square, and they are only 
cornerjoined and symmetrically arrayed around the vector equilibrium in respect 
to one another. We can pair the six opposite square faces so that there are three 
pairs, and we can interconnect their opposite centers of area to provide three axes, 
corresponding to the XYZ coordinates of Cartesian geometry. We can spin the 
vector equilibrium on each of these three intersymmetrically positioned axes of 
square symmetry to produce three equators of spin. These axes generate the set of 
three intersymmetrical great-circle equators of the vector equilibrium. Together 
the three great circles subdivide the vector equilibrium into eight octants. 

 450.13  There are also eight symmetrically arrayed triangular faces of the vector 
equilibrium. We can pair the symmetrically opposite triangular faces so that there 
are four pairs, and we can interconnect their opposite centers of area to provide 
four intersymmetrically positioned axes. We can spin the vector equilibrium on 
each of these four axes of symmetry to produce four intersymmetrical equators of 
spin. These axes generate the set four intersymmetrical great-circle equators of 
the vector equilibrium. 

 450.14  When the 12 intersymmetrically positioned vertexes of the vector 
equilibrium are polarly interconnected, the lines of most economical 
interconnection provide six symmetrically interpositioned axes of spin. These six 
axes generate the set of six intersymmetrical great-circle equators of the vector 
equilibrium. 

 450.15  We may also most economically interconnect the 24 polarly opposed 
midpoints of the 24 intersymmetrically arrayed edges of the vector equilibrium to 
provide 12 sets of intersymmetrically positioned axes of spin. These axes generate 
the set of twelve intersymmetrical great-circle equators of the vector equilibrium. 

 450.16  As described, we now have sum-totally three square-face-centered axes, 
plus four triangular-face-centered axes, plus six vertex-centered axes, plus 12 
edge-centered axes (3 + 4 + 6 + 12 = 25). There are a total of 25 complexedly 
intersymmetrical great circles of the vector equilibrium. 

 451.00  Vector Equilibrium: Axes of Symmetryand Points of Tangency in 
Closest Packing of Spheres 

 451.01  It is a characteristic of all the 25 great circles that each one of them goes 
through two or more of the vector equilibrium's 12 vertexes. Four of the great 
circles go through six vertexes; three of them go through four vertexes; and 18 of 
them go through two vertexes. 



 451.02  We find that all the sets of the great circles that can be generated by all 
the axes of symmetry of the vector equilibrium go through the 12 vertexes, which 
coincidentally constitute the only points of tangency of closestpacked, uniform-
radius spheres. In omnidirectional closest packing, we always have 12 balls 
around one. The volumetric centers of the 12 uniformradius balls closest packed 
around one nuclear ball are congruent with the 12 vertexes of the vector 
equilibrium of twice the radius of the closest-packed spheres. 

 451.03  The network of vectorial lines most economically interconnecting the 
volumetric centers of 12 spheres closest packed around one nuclear sphere of the 
same radius describes not only the 24 external chords and 12 radii of the vector 
equilibrium but further outward extensions of the system by closest packing of 
additional uniform-radius spheres omnisurrounding the 12 spheres already closest 
packed around one sphere and most economically interconnecting each sphere 
with its 12 closest-packed tangential neighbors, altogether providing an isotropic 
vector matrix, i.e., an omnidirectional complex of vec torial lines all of the same 
length and all interconnected at identically angled convergences. Such an 
isotropic vector matrix is comprised internally entirely of triangular-faced, 
congruent, equiedged, equiangled octahedra and tetrahedra. This isotropic matrix 
constitues the omnidirectional grid. 

 451.04  The basic gridding employed by nature is the most economical 
agglomeration of the atoms of any one element. We find nature time and again 
using this closest packing for most economical energy coordinations. 

 452.00  Vector Equilibrium: Great-Circle Railroad Tracks of Energy 

 452.01  The 12 points of tangency of unit-radius spheres in closest packing, such 
as is employed by any given chemical element, are important because energies 
traveling over the surface of spheres must follow the most economical spherical 
surface routes, which are inherently great circle routes, and in order to travel over 
a series of spheres, they could pass from one sphere to another only at the 12 
points of tangency of any one sphere with its closestpacked neighboring uniform-
radius sphere. 



 452.02  The vector equilibrium's 25 great circles, all of which pass through the 
12 vertexes, represent the only "most economical lines" of energy travel from one 
sphere to another. The 25 great circles constitute all the possible "most 
economical railroad tracks" of energy travel from one atom to another of the same 
chemical elements. Energy can and does travel from sphere to sphere of closest-
packed sphere agglomerations only by following the 25 surface great circles of the 
vector equilibrium, always accomplishing the most economical travel distances 
through the only 12 points of closestpacked tangency. 

 452.03  If we stretch an initially flat rubber sheet around a sphere, the outer 
spherical surface is stretched further than the inside spherical surface of the same 
rubber sheet simply because circumference increases with radial increase, and the 
more tensed side of the sheet has its atoms pulled into closerradial proximity to 
one another. Electromagnetic energy follows the most highly tensioned, ergo the 
most atomically dense, metallic element regions, wherefore it always follows 
great-circle patterns on the convex surface of metallic spheres. Large copper-
shelled spheres called Van De Graaff electrostatic generators are employed as 
electrical charge accumulators. As much as two million volts may be accumulated 
on one sphere's surface, ultimately to be discharged in a lightninglike leap- across 
to a near neighbor copper sphere. While a small fraction of this voltage might 
electrocute humans, people may walk around inside such high-voltage-charged 
spheres with impunity because the electric energy will never follow the concave 
surface paths but only the outer convex great-circle paths for, by kinetic 
inherency, they will always follow the great-circle paths of greatest radius. 

 452.04  You could be the little man in Universe who always goes from sphere to 
sphere through the points of intersphere tangencies. If you lived inside the 
concave surface of one sphere, you could go through the point of tangency into 
the next sphere, and you could go right through Universe that way always inside 
spheres. Or you could be the little man who lives on the outside of the spheres, 
always living convexly, and when you came to the point of tangency with the next 
sphere, you could go on to that next sphere convexly, and you could go right 
through Universe that way. Concave is one way of looking at Universe, and 
convex is another. Both are equally valid and cosmically extensive. This is typical 
of how we should not be fooled when we look at spheres __or by just looking at 
the little local triangle on the surface of our big sphere and missing the big 
triangle6 always polarly complementing it and defined by the same three edges 
but consisting of all the unit spherical surface area on the outer side of the small 
triangle's three edges. These concave-convex, inside-out, and surface-area 



complementations are beginning to give us new clues to conceptual 
comprehending. 

 (Footnote 6: See Sec. 810, "One Spherical Triangle Considered as Four.") 

 452.05  As was theoretically indicated in the foregoing energy-path discoveries, 
we confirm experimentally that electric charges never travel on the concave side 
of a sphere: they always stay on the convex surface. In the phenomenon of 
electroplating, the convex surfaces are readily treated while it is almost impossible 
to plate the concave side except by use of a close matrix of local spots. The 
convex side goes into higher tension, which means that it is stretched thinner and 
tauter and is not only less travel-resistant, but is more readily conductive because 
its atoms are closer to one another. This means that electromagnetic energy 
automatically follows around the outside of convex surfaces. It is experimentally 
disclosed and confirmed that energy always seeks the most economical, ergo 
shortest, routes of travel. And we have seen See Sec. 810, "One Spherical 
Triangle Considered as Four." that the shortest intersphere or interatom routes 
consist exclusively of the 25 great-circle geodesic-surface routes, which transit the 
12 vertexes of the vector equilibrium, and which thus transit all the possible points 
of tangency of closest-packed spheres. 

 452.06  There always exists some gap between the closest-packed spheres due to 
the nuclear kinetics and absolute discontinuity of all particulate matter. When the 
12 tangency gaps are widened beyond voltage jumpability, the eternally 
regenerative conservation of cosmic energy by pure generalized principles will 
reroute the energies on spherically closed great-circle "holding patterns" of the 25 
great circles, which are those produced by the central-angle foldings of the four 
unique great-circle sets altogether comprising the vector equilibrium's 25 great 
circles. 
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 452.07  High energy charges in energy networks refuse to take the longest of the 
two great-circle arc routes existing between any two spherical points. Energy 
always tends to "short-circuit," that is, to complete the circuit between any two 
spherical surface points by the shortest great-circle arc route. This means that 
energy automatically triangulates via the diagonal of a square or via the 
triangulating diagonals of any other polygons to which force is applied. Triangular 
systems represent the shortest, most economical energy networks. The triangle 
constitutes the self-stabilizing pattern of complex kinetic energy interference 
occasioned angular shuntings and three-fold or more circle interaction averaging 
of least-resistant directional resultants, which always trend toward equiangular 
configurations, whether occurring as free radiant energy events or as local self- 
structurings. 

Next Section: 453.00 
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