
 453.00  Vector Equilibrium: Basic Equilibrium LCD Triangle 

Fig. 453.01 

453.01  The system of 25 great circles of the vector equilibrium defines its own 
lowest common multiple spherical triangle, whose surface is exactly 1/48th of the 
entire sphere's surface. Within each of these l/4sth-sphere triangles and their 
boundary arcs are contained and repeated each time all of the unique 
interpatterning relationships of the 25 great circles. Twenty-four of the 48 
triangles' patternings are "positive" and 24 are "negative," i.e., mirrorimages of 
one another, which condition is more accurately defined as "inside out" of one 
another. This inside-outing of the big triangles and each of their contained 
triangles is experimentally demonstrable by opening any triangle at any one of its 
vertexes and holding one of its edges while sweeping the other two in a 360-
degree circling around the fixed edge to rejoin the triangle with its previous 
outsideness now inside of it. This is the basic equilibrium LCD triangle; for a 
discussion of the basic disequilibrium LCD triangle, see Sec. 905. 

Fig. 453.02 

453.02  Inside-Outing of Triangle: The inside-outing transformation of a 
triangle is usually misidentified as "left vs. right," or "positive and negative," or 
as "existence vs. annihilation" in physics. 

 453.03  The inside-outing is four-dimensional and often complex. It functions as 
complex intro-extroverting. 

 454.00  Vector Equilibrium: Spherical Polyhedra Described by Great 
Circles 
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Fig. 453.01 Great Circles of Vector Equilibrium Define Lowest Common Multiple Triangle: 1/48th of a Sphere: The shaded 
triangle is 1/48th of the entire sphere and is the lowest common denominator (in 24 rights and 24 lefts) of the total spherical 
surface. The 48 LCD triangles defined by the 25 great circles of the vector equilibrium are grouped together in whole 
increments to define exactly the spherical surface areas, edges, and vertexes of the spherical tetrahedron, spherical cube, 
spherical octahedron, and spherical rhombic dodecahedron. The heavy lines are the edges of the four great circles of the vector 
equilibrium. Included here is the spherical trigonometry data for this lowest-common-denominator triangle of 25-great-circle 
hierarchy of the vector equilibrium. 
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Fig. 453.02 Inside-Outing of Triangle: This illustrates the insid-outing of a triangle, 
which transformation is usually misidentified as "left vs. right" or "positive and 
negative" or as "existence vs. annihilation" in physics. The inside-outing is four-
dimensional and often complex. The insid-outing of the rubber glove explains 
"annihilation" and demonstrates complex into-extroverting. 
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Fig. 454.01A 

Fig. 454.01B 

Fig. 454.01C 

454.01  The 25 great circles of the spherical vector equilibrium provide all the 
spherical edges for five spherical polyhedra: the tetrahedron, octahedron, cube, 
rhombic dodecahedron, and vector equilibrium, whose corresponding planar-
faceted polyhedra are all volumetrically rational, even multiples of the 
tetrahedron. For instance, if the tetrahedron's volume is taken as unity, the 
octahedron's volume is four, the cube's volume is three, the rhombic 
dodecahedron's is six, and the vector cquilibrium's is 20 (see drawings section). 

 454.02  This is the hierarchy of rational energy quanta values in synergetics, 
which the author discovered in his youth when he first sought for an omnirational 
coordinate system of Universe in equilibrium against which to measure the 
relative degrees of orderly asymmetries consequent to the cosmic myriad of 
pulsatively propagated energetic transactions and transformations of eternally 
conserving evolutionary events. Though almost all the involved geometries were 
long well known, they had always been quantized in terms of the cube as 
volumetric unity and its edges as linear unity; when employed in evaluating the 
other polyhedra, this method produced such a disarray of irrational fraction values 
as to imply that the other polyhedra were only side-show geometric freaks or, at 
best, "interesting aesthetic objets d'art." That secondpowering exists today in 
academic brains only as "squaring" and thirdpowering only as cubing is manifest 
in any scientific blackboard discourse, as the scientists always speak of the x2 they 
have just used as "x squared" and likewise always account x3 as "x cubed" (see 
drawings section). 

 454.03  The spherical tetrahedron is composed of four spherical triangles, each 
consisting of 12 basic, least-common-denominator spherical triangles of vector 
equilibrium. 

 454.04  The spherical octahedron is composed of eight spherical triangles, each 
consisting of six basic-vector-equilibrium, least-common-denominator triangles of 
the 25 great-circle, spherical-grid triangles. 



Fig. 454.01A The six great circles of the vector equilibrium disclose the spherical 
tetrahedra and the spherical cube and their chordal, flat-faceted, polyhedral counterparts. 
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Fig. 454.01B The six great circles of the vector equilibrium disclose the six square faces 
of the spherical cube facets whose eight vertexes are centered in the areal centers of the 
vector equilibrium's eight spherical triangles. 
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Fig. 454.01C The six great circles of the vector equilibrium disclose the 12 rhombic 
diamond facets (cross-hatching) of the rhombic dodecahedron, whose centers are 
coincident the the 12 vertexes (dots) of the vector equilibrium. 
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 454.05  The spherical cube is composed of six spherical squares with corners of 
120 each, each consisting of eight basic-vector-equilibrium, leastcommon-
denominator triangles of the 25 great-circle spherical-grid triangles. 

Fig. 454.06 

454.06  The spherical rhombic dodecahedron is composed of 12 spherical 
diamond- rhombic faces, each composed of four basic-vector-equilibrium, least-
common- denominator triangles of the 25 great-circle, spherical-grid triangles. 

 455.00  Great-Circle Foldabilities of Vector Equilibrium 

 455.01  Foldability of Vector Equilibrium Four Great-Circle Bow Ties: All 
of the set of four great circles uniquely and discretely describing the vector 
equilibrium can be folded out of four whole (non-incised), uniformradius, circular 
discs of paper, each folded radially in 60-degree central angle increments, with 
two diametric folds, mid-circle, hinge-bent together and locked in radial 
congruence so that their six 60-degree arc edges form two equiangled spherical 
triangles, with one common radius-pairing fastened together at its external apex, 
that look like a bow tie. The pattern corresponds to the external arc trigonometry, 
with every third edgefold being brought into congruence to form great-circle-
triangled openings at their top with their pointed lower ends all converging ice-
cream-cone-like at the center of the whole uncut and only radially folded great 
circles. When the four bow ties produced by the folded circles are assembled 
together by radii congruence and locking of each of their four outer bow-tie 
corners to the outer bow-tie corners of one another, they will reestablish the 
original four great-circle edge lines of the vector equilibrium and will accurately 
define both its surface arcs and its central angles as well as locating the vector-
equilibrium axes of symmetry of its three subsets of great-circle-arc-generating to 
produce, all told, 25 great circles of symmetry. When assembled with their 
counterpart foldings of a total number corresponding to the great-circle set 
involved, they will produce a whole sphere in which all of the original great 
circles are apparently restored to their completely continuing-around-the-sphere 
integrity. 



Fig. 454.06 Definition of Spherical Polyhedra in 25-Great-Circle Vector Equilibrium 
System: The 25 great circles of the spherical vector equilibrium provide all the spherical 
edges for four spherical polyhedra in addition to the vector equilibrium whose edges are 
shown here as heavy lines. The shading indicates a typical face of each as follows: 

A.  The edges of one of the spherical tetrahedron's four spherical triangles consists of 
12 VE basic LCD triangles. 

B.  The edges of one of the spherical octahedron's eight spherical triangles consists of 
six VE basic LCD triangles. 

C.  The edges of one of the spherical cube's six spherical squares consists of eight VE 
basic LCD triangles. 

D.  The edges of one of the spherical rhombic dodecahedron's 12 spherical rhombic 
faces consists of four VE basic LCD triangles. 

E.  The edges of one of the spherical octahedron's eight spherical triangles consists of 
a total area equal to six VE basic LCD triangles. 
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 455.02  The sum of the areas of the four great-circle discs elegantly equals the 

surface area of the sphere they define. The area of one circle is r2. The area of 

the surface of a sphere is 4 r2. The area of the combined four folded great-circle 

planes is also 4 r2 and all four great-circle planes go through the exact center of 
the sphere and, between them, contain no volume at all. The sphere contains the 
most volume with the least surface enclosure of any geometrical form. This is a 
cosmic limit at maximum. Here we witness the same surface with no volume at 
all, which qualifies the vector equilibrium as the most economic nuclear 
"nothingness" whose coordinate conceptuality rationally accommodates all 
radiational and gravitational interperturbational transformation accounting. In the 
four great-circle planes we witness the same surface area as that of the sphere, but 
containing no volume at all. This too, is cosmic limit at zero minimumness. 

 455.03  It is to be noted that the four great-circle planes of the vector equilibrium 
passing exactly through its and one another's exact centers are parallel to the four 
planes of the eight tetrahedra, which they accommodate in the eight triangular 
bow-tie concavities of the vector equilibrium. The four planes of the tetrahedra 
have closed on one another to produce a tetrahedron of no volume and no size at 
all congruent with the sizeless center of the sphere defined by the vector 
equilibrium and its four hexagonally intersected planes. As four points are the 
minimum necessary to define the insideness and outsideness unique to all 
systems, four triangular facets are the minimum required to define and isolate a 
system from the rest of Universe. 

 455.04  Four is also the minimum number of great circles that may be folded into 
local bow ties and fastened corner-to-corner to make the whole sphere again and 
reestablish all the great circles without having any surfaces double or be 
congruent with others or without cutting into any of the circles. 

 455.05  These four great-circle sets of the vector equilibrium demonstrate all the 
shortest, most economical railroad "routes" between all the points in Universe, 
traveling either convexly or concavely. The physical-energy travel patterns can 
either follow the great-circle routes from sphere to sphere or go around in local 
holding patterns of figure eights on one sphere. Either is permitted and 
accommodated. The four great circles each go through six interspherical tangency 
points. 



 455.10  Foldability of Vector Equilibrium Six Great-Circle Bow Ties: The 
foldable bow ties of the six great circles of the vector equilibrium define a 
combination of the positive and negative spherical tetrahedrons within the 
spherical cube as well as of the rhombic dodecahedron. 

Fig. 455.11 

455.11  In the vector equilibrium's six great-circle bow ties, all the internal, i.e., 
central angles of 70° 32' and 54° 44', are those of the surface angles of the vector 
equilibrium's four great-circle bow ties, and vice versa. This phenomenon of 
turning the inside central angles outwardly and the outside surface angles 
inwardly, with various fractionations and additions, characterizes the progressive 
transformations of the vector equilibrium from one greatcircle foldable group into 
another, into its successive stages of the spherical cube and octahedron with all of 
their central and surface angles being both 90 degrees even. 

Fig. 455.20 

455.20  Foldability of 12 Great Circles into Vector Equilibrium: We can take 
a disc of paper, which is inherently of 360 degrees, and having calculated with 
spherical trigonometry all the surface and central angles of both the associated 
and separate groups of 3__ 4__ 6__ 12 great circles of the vector equilibrium's 25 
great circles, we can lay out the spherical arcs which always subtend the central 
angles. The 25 great circles interfere with and in effect "bounce off" or penetrate 
one another in an omnitriangulated, nonredundant spherical triangle grid. 
Knowing the central angles, we can lay them out and describe foldable triangles 
in such a way that they make a plurality of tetrahedra that permit and 
accommodate fastening together edge-to-edge with no edge duplication or 
overlap. When each set, 312, of the vector equilibrium is completed, its 
components may be associated with one another to produce complete spheres 
with their respective great- circle, 360-degree integrity reestablished by their arc 
increment association. 

 455.21  The 25 folded great-circle sections join togetha to reestablish the 25 great 
circles. In doing so, they provide a plurality of 360-degree local and long-distance 
travel routes. Because each folded great circle starts off with a 360-degree disc, it 
maintains that 360-degree integrity when folded into the bow-tie complexes. It is 
characteristic of electromagnetic wave phenomena that a wave must retum upon 
itself, completing a 360- degree circuit. The great-circle discs folded or flat 
provide unitary-wave-cycle circumferential circuits. Therefore, folded or not, they 
act like waves coming back upon themselves in a perfect wave control. We find 
their precessional cyclic sdf-interferences producing angular resultants that shunt 
themselves into little local 360-degree, bow-tie "holding patterns." The entire 
behavior is characteristic of generalized wave phenomena. 



Fig. 455.11 Folding of Great Circles into Spherical Cube or Rhombic Dodecahedron and Vector 
Equilibrium: Bow-Tie Units: 

A.  This six-great-circle construction defines the positive-negative spherical tetrahedrons within 
the cube. This also reveals a spherical rhombic dodecahedron. The circles are folded into "bow-
tie" units as shown. The shaded rectangles in the upper left indicates the typical plane 
represented by the six great circles. 

B.  The vector equilibrium is formed by four great circle folded into "bow-ties." The sum of the 

areas of the four great circles equals the surface area of the sphere. (4  r2). 
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Fig. 455.20 The 10 great circles of the Icosahedron Constructed from 10 folded units (5 positive units + 5 negative 
units). 
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 455.22  In the case of the 12 great circles of the vector equilibrium, various 
complex transformative, anticipatory accommodations are manifest, such as that 
of the 12 sets of two half-size pentagons appearing in the last, most complex great-
circle set of the vector equilibrium, which anticipates the formation of 12 whole 
pentagons in the six great-circle set of the 31 great circles of the icosahedron into 
which the vector equilibrium first transforms contractively. 

Next Section: 456.00 
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