
466.00  Energy-valve Functioning of Outer Shell of Nuclear Domains 

Fig. 466.00 

Fig. 466.01 

466.01  An earlier version of Fig. 466.01 was first published by the author in 
1944: it illustrates the energy-valving aspects of the closest-packed spheres 
interfunctionings as they occur within the three-frequency, 92-ball outer layer of 
the vector equilibrium as it "jitterbuggingly" skew-transforms into the icosahedral 
state, then returns to the vector equilibrium state, passes through, and again 
transforms to the alternately skewed icosahedral state__ repeat and repeat. 

 466.02  The 90-degree interalignment of the 16 balls of any one of the six square 
faces of the vector equilibrium (Fig. B) is inherently unstable. The 16 balls 
resolve their instability by forming any one of two alternate types of most closely 
packed diamonds (Figs. D and E) with either a short cross axis or a long diagonal 
axis. Both types are equiedged, equiarea, and most densely packed, and they 
occupy less area than their equiedged square counterparts. This is quickly 
evidenced geometrically because both the square (Fig. B) and the diamond (Fig. 
D) have the same-length base edge XY, but the altitude WZ of the square is 
greater than the altitude Z of the diamond. 

 466.03  As displayed in a planar array, Fig. A, there is an apex sphere K 
surroundingly shared by the innermost corners (vertexes) of two square-faced, 16-
ball grids, M and N, as well as by the two diamondsÑthe short-axis diamond E 
and the long- axis diamond D. 

 466.04  The apex sphere K's neighboring spheres are uncomfortable because K is 
surrounded by seven spheres and not six. Only six can closest pack around one in 
any given plane. One of the two adjacent spheres M or N from the two square-
faced grids will get pushed in, and the other one will be pushed out, depending 
upon which way the vector-equilibrium-to-icosahedron jitterbug transformation is 
rotating around apex sphere K. The "in-and-out" pumping of spheres M and N 
acts as an energy-propagating valve. 



 

Fig 466.00 Energy-valve Functions of Closest Sphere Packing: This series illustrates the 
skew- transformation of the 92-ball icosahedral aggregate to a vector equilibrium 
conformation and its return to the icosahedral state.

Figs. 466A-G illustrate closest-sphere-packing transformation.
Figs 466a-g illustrate polyhedral resultants. 
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Fig. 466.01 Reciprocal Motion of Nine Internal Spheres Propagates Wave by Diagonal 
Elongation: (The original version of this drawing was copyrighted by R. Buckminster 
Fuller in 1944.) This is a planar representation of the closest-packed spheres in the outer 
layer as they skew-transform between the icosahedral and the vector equilibrium phases. 

A.  Apex sphere K surrounded by two 16-ball grids M and N, and by short-axis 
diamond E and long-axis diamond D. 

B.  The 90-degree alignment of the 16 balls of any one of the six square faces of the 
vector equilibrium. 

C.  Plan view of the closest-packing aspects of any one of the vector equilibrium's 
four pairs of nuclear tetrahedra as they begin to torque in the jitterbug process. 

D.  Short-axis diamond. 
E.  Long-axis diamond. 
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 466.05  Fig. C is a plan view of the closest-sphere-packing manifestation of any 
one of the vector equilibrium's four pairs of nuclear tetrahedra as they commence 
to torque in the jitterbug process. An isometric sketch of this net 39-ball 
aggregation is given at Fig. 466.31 Note that this torqued pair of nuclear 
tetrahedra employs three of the vector equilibrium's six axes. The two unengaged 
axes of the equator are starved and inoperative. 

 466.10  High-frequency Sphericity Approaches Flatness 

 466.11  Where we have six balls in a planar array closest packed around one 
nucleus, we produce six top and six bottom concave tetrahedral valleys 
surrounding the nucleus ball. We will call the top set of valleys the northern set 
and the bottom set the southern set. Despite there being six northern valleys we 
find that we can nest only three close- packed (triangulated) balls in the valleys. 
This is because we find that the balls nesting on top of the valleys occupy twice as 
much planar area as that afforded by the six tetrahedral valleys. Three balls can 
rest together on the top in omni-close-packed tangency with one another and with 
the seven balls below them; and three balls can similarly rest 
omniintertangentially in the bottom valleys as their top and bottom points of 
tangency bridge exactly across the unoccupied valleys, allowing room for no other 
spheres. This produces the symmetrical nuclear vector equilibrium of 12 closest-
packed spheres around one. (See Fig. 466.13A.) 

 466.12  The three balls on the top can be lifted as a triangular group and rotated 
60 degrees in a plane parallel to the seven balls of the hexagonal equatorial set 
below them; this triangular group can be then set into the three previously vacant 
and bridged-over valleys. As this occurs, we have the same 12 spheres closest 
packed around one with an overall arrangement with the two triangular sets of 
three on the top, three on the bottom, and six around the equator. The top and the 
bottom triangular sets act as poles of the system, which__ as with all systems__ has 
inherent free spinnability. In both of the two alternate valley occupations the 
northern polar triangle is surrounded alternately by three squares and three 
triangles, reading alternately__ triangle, square, triangle, square, triangle, square. 
(See Fig. 466.13B.) 



Fig. 466.13 

466.13  In one polar triangular valley occupation the squares of the northern 
hemisphere will be adjacent to the triangles of the southern hemisphere. This is 
the vector- equilibrium condition. In the alternate valley nesting position at the 
equator the equatorial edges of the squares of the northern hemisphere will abut 
the squares of the southern hemisphere, and the triangles of the northern 
hemisphere will abut those of the southern, producing a polarized symmetry 
condition. In the vector-equilibrium condition we have always and everywhere 
the triangle-and-square abutments, which produces a four- dimensional symmetry 
system. (See Sec. 442 and Fig. 466.13C.) 

 466.14  There is then a duality of conditions of the same 12 nucleus-surrounding 
first omni-inter-closest-packed layer: we have both a polarized symmetry phase 
and an equilibrious symmetry phase. Under these alternate conditions we have 
one of those opportunities of physical Universe to develop a pulsative alternation 
of interpatterning realizations, whereby the alternations in its equilibrium phase 
do not activate energy, while its polarized phase does activate energetic 
proclivities. The equilibrious phase has no associative proclivities, while the 
polarized phase has associative proclivities. In the polarized phase we have 
repulsion at one end and attraction at the other: potential switchings on and off of 
energetic physical Universe. (See Figure 466.13D.) 

 466.15  When modular frequency enters into the alternately vector 
equilibrium«polarized conformations, the vertexes of the multifrequenced nuclear 
system are occupied by uniradius spheres, whereat it is evidenced that the 
equatorial continuity set of spheres can be claimed either by the northern or 
southern set of triangles and squares, but they cannot serve both simultaneously. 
Here again we have alternating conditions__ starving or fulfilling__ of northern 
and southern hemispheres matching or nonmatching triangles and squares, with 
the central equilibrium condition having a large plurality of alternately realizable 
behaviors under variously modified conditions affected further as frequency 
increases the numbers of edge-vertex-occupying spheres. 
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Fig. 466.13 

A.  Twelve Closest-packed Spheres around One: Symmetrical nuclear vector 
equilibrium. 

B.  Twelve Closest-packed Spheres around One: Rotation of top triangular group. 
C.  Twelve Closest-packed Spheres around One: Alternate nestability in polar 

triangular valley. 
D.  Twelve Closest-packed Spheres around One: Alternate polarized symmetry of 

vector equilibrium. 
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 466.16  As the frequencies of vector equilibria or icosahedra increase, the relative 
size of the occupied arcs of the great circles involved become of ever lesser 
magnitude. At a high frequency of larger spheres__ for example, planet Earth__ 
the conditions of patterning around the 12 external vertexes of the vector 
equilibria or icosahedra appear to be approximately flat, in contrast to the sharp 
concavity/convexity of the nonfrequenced convergence of the four planes around 
the corners of the vector equilibrium and the convergence of the five planes 
around the corners of the icosahedron. 

 466.17  In very-high-frequency nuclear systems the approach to flatness from the 
four planes to five planes tends to induce a 360-degreeness of the sums of the 
angles around the critical 12 vertexes__ in contrast to the 300degree condition 
existing in both the unfrequenced vector equilibrium and icosahedron. That is 
what Fig. 466.01 is all about. 

 466.18  In Figs. 466.01 and 466.41 there is introduced an additional 60 degree 
equilateral triangle, in surroundment of every directly-nuclear-emanating vertex 
K. The 12 vector-equilibrium K vertexes are always in direct linear relationship 
with the system nucleus (see Sec. 414). The additional degrees of angle produced 
by the high-frequency local flattening around K vertexes introduces a disturbance-
full exterior shell condition that occasions energetic consequences of a centrifugal 
character. 

 466.20  Centrifugal Forces 

 466.21  As we get into ultra-ultra-high-frequency, and as we get to greater and 
greater sphericity, by virtue of the inherent spin, we can account for the vector 
equilibrium becoming the sphere of lesser radius, becoming the sphere of 
approximately tetravolume 5, while the relative flatness around the critical K 
vertexes relates to the centrifugal forces involved. 

 466.22  People think of centrifugal force as picturable by arrows expelled 
radially (perpendicularly) outward. But in fact centrifugal force operates as a 
hammer-thrower's hammer does: it departs from the system tangentially, not 
radially. Since the outward tangent ends reach ever farther away, there is a net 
only-indirectly-radial force realized. This common misapprehension of the 
assumed 180-degreeness of centrifugal forces has greatly misled human thinking 
and has obscured comprehensions of precession. 
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 466.23  At certain high frequencies the energy displacements tend to occur that 
do not tend to occur at low- or no-frequency conditions, which brings us into the 
realm of possibly comprehending the photon-emitting radiation limits of operation 
within the 92 regenerative chemical elements and the split-second articulatability 
of transuranium nuclear systems when bombarded with ultraultra-high-frequency 
energy missiles. The lower the frequency, the higher the required bombardment 
energies. 

 466.30  Nuclear Tetrahedra Pairs: Closest-sphere-packing Functions 

Fig. 466.31 

466.31  In Fig. 466.01-C is a plan view of the closest-sphere-packing 
manifestation of any one of the vector equilibrium's four pairs of nuclear 
tetrahedra as they commence to torque in the jitterbug process. An isometric 
sketch of this net 39-ball aggregation is given in Fig. 466.31. Note that this 
torqued, north-south-pole, axial pair of tetrahedra employs three of the vector 
equilibrium's six axes. The other three unengaged axes lying in the equator are 
starved and inoperative__ angularly acceleratable independently of the north-
south axial motion. 

 466.32  In Fig. 466.01-C we see the internal picture from the nucleus to the 

vertexes displaying the hexagonal pattern emerging at F3. 

 466.33  There can be only one pair of tetrahedra operative at any one time. The 
other three pairs of tetrahedra function as standby auxiliaries, as in the triangular-
cammed, in- out-and-around, rubber cam model described in Secs. 465.01 and 
465.10. 

 466.34  The active triangular face has to share its vertexes with those of the 
adjacent square-face grids. This transformation relates to the transformation of the 
octahedron and the rhombic dodecahedron. 

 466.35  In the outer layer of 92 balls__ two of which are extracted for the axis of 
spin__there are eight triangular faces. There are four balls in the center of each of 
the six square faces. 

 6 × 4 = 24. 92 - 24 = 68. 68/8 = 8 l/2. 

 We need 20 balls for a pair of complete polar triangles. 
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Fig. 466.31 Nuclear Tetrahedra Pairs: An isometric view of 39-ball aggregate of 
torqued, north-south pole, axial pair of tetrahedra at nucleus of vector equilibrium. 
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 68 - 20 = 48. 48/8 = 6; a pair of 6s = 12.

Thus there are only 12 available where 20 are required for a polar pair. In any one 
hemisphere the vertex balls A, B, C used by a polar triangle make it impossible to 
form any additional polar units. 

 466.40  Universal Section of Compound Molecular Matrix 

 466.41  The illustration at the back-end paper was first published by the author in 
1944. It displays the surface shell matrix of an ultra-high-frequency sphere in 
which a local planar flatness is approached. The vertexes are energy centers, just 
as in the isotropic vector matrix where 12 exterior corner vertexes of the vector 
equilibria are always connected in 180-degree tangential direct radial alignment 
with the nuclear sphere. 

 466.42  This compound molecular matrix grid provides a model for molecular 
compounding because it accommodates more than one tetrahedron. 

 466.43  This matrix is not isotropic. It is anisotropic. It accommodates the 
domain of a nucleus. 

Next Section: 470.00 
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