
840.00  Foldability of Four Great Circles of Vector Equilibrium 

 841.00  Foldability Sequence 

 841.11  Using the method of establishing perpendiculars produced by the 
overlapping of unit-radius circles in the first instance of the Greeks' exclusively 
one-planar initiation of their geometry (see Illus. 455.11), a diameter PP' 
perpendicular to the first straightedge constructed diameter DD' can be 
constructed. If we now fold the paper circles around DD' and PP', it will be found 
that every time the circles are folded, the points where the perpendicular to that 
diameter intercept the perimeter are inherently congruent with the same 
perpendicular's diametrically opposite end. 

 841.12  The succession of positive and negative foldings in respect to the original 
plane folded around a plurality of diameters of that plane will define a sphere with 
inherent poles P and P', which occur at the point of crossing of the rotated 
perpendiculars to the folded-upon diameters, the PP' points being commonly 
equidistant from the first prime, as yet unfolded circle cut out from the first piece 
of paper. This constructional development gives us a sphere with a polar axis PP' 
perpendicular to the original plane's circle at the center of that circle. We can also 
fold six great circles of unit radius, first into half-circle, 180-degree-arc units, and 
then halve-fold those six into 90-degree "bookends," and assemble them into a 
spherical octahedron with three axes, and we can rotate the octahedron around 
axis PP' and thus generate a spherical surface of uniform radii. 

 841.13  We could also have constructed the same sphere by keeping point A of 
the dividers at one locus in Universe and swinging point B in a multiplicity of 
directions around A (see Illus. 841.15 ). We now know that every point on the 
surface of an approximate sphere is equidistant from the same center. We can now 
move point A of the dividers from the center of the constructed sphere to any 
point on the surface of the sphere, but preferably to point P perpendicular to an 
equatorially described plane as in 
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 841.11 and 841.12 . And we can swing the free point B to strike a circle on the 
surface of the sphere around point P. Every point in the spherical surface circle 
scribed by B is equidistant chordally from A, which is pivotally located at P, that 
is, as an apparently straight line from A passing into and through the inside of the 
spherical surface to emerge again exactly in the surface circle struck by B, which 
unitary chordal distance is, by construction, the same length as the radius of the 
sphere, for the opening of our divider's ends with which we constructed the sphere 
was the same when striking the surface circle around surface point A. 

 841.14  We now select any point on the spherical surface circle scribed by point 
B of the dividers welded at its original radius-generating distance with which we 
are conducting all our exploration of the spheres and circles of this operational 
geometry. With point A of the dividers at the north-polar apex, P', of the spherical 
octahedron's surface, which was generated by rotating the symmetrical assembly 
of six 90-degree, quadrangularly folded paper circles. Axis PP' is one of its three 
rectilinearly interacting axes as already constructively described. 

Fig. 841.15A 
Fig. 841.15B 

841.15  We now take any point, J, on the spherical surface circle 
scribed by the divider's point B around its rotated point at P. We now 
know that K is equidistant chordally from P and from the center of 
the sphere. With point A of our dividers on J, we strike point K on the 
same surface circle as J, which makes J equidistant from K, P, and X, 
the center of the sphere. Now we know by construction integrity that 
the spherical radii XJ, XK, and XP are the same length as one another 
and as the spherical chords PK, JK, and JP. These six equilength lines 
interlink the four points X, P, J, and K to form the regular equiedged 
tetrahedron. We now take our straightedge and run it chordally from 
point J to another point on the same surface circle on which JK and K 
are situated, but diametrically opposite K. This diametric positioning 
is attained by having the chord- describing straightedge run inwardly 
of the sphere and pass through the axis PP', emerging from the sphere 
at the surface-greatcircle point R. With point A of the dividers on 
point R of the surface circle__on which also lies diametrically point 
K__we swing point B of the dividers to strike point S also on the same 
spherical surface circle around P, on which now lie also the points J, 
K and R, with points diametrically opposite J, as is known by 
construction derived information. Points R, S, P, and X now describe 
another regular tetrahedron equiedged with tetrahedron JKPX; there 
is one common edge, PX, of both tetrahedra. PX is the radius of the 



Fig. 841.15A Realization of Four Great Circles of Vector Equilibrium. 
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Fig. 841.15B Fixed Radius Striking a Small Circle on the Surface of a Sphere. 
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spherical, octahedrally constructed sphere on whose surface the circle 
was struck around one of its three perpendicularly intersectioned 
axes, and the three planes through them intersect congruently with the 
three axes by construction. PX is perpendicular to the equatorial plane 
passing through W, Y, W', Y' of the spherical octahedron's three axes 
PP', WW', and YY'. 

 841.16  We may now take the congruent radius edge PX of the two tetrahedra 
and separate it into the two radii (PX)1 and (PX)2 and rotate their two P ends 
(PM) and (PN), away from one another around the sphere's center, X, until (PM) 
and (PX) are diametrically opposite one another. Therefore, points (PM) and (PN) 
are now lying in the octahedron's equatorial plane WXW'Y'. We may now rotate 
points J, K, R, and S around the (PM), X (PN) axis until points J, K, R, and S all 
lie in the octahedral plane WY W'X', which converts the opened unitary 
construction first into a semifolded circle and then into a circle congruent with the 
octahedron's equatorial plane, all of which six-hinged transformation was 
permitted as all the seven points__(PM), J, K, (PN), S, R, X__were at all times 
equidistant from one another, with no restraints placed on the motion. We now 
have the hexagonally divided circle as a constructionally proven geometrical 
relationship; and therefore we have what the Greeks could not acquire: i.e., a 
trisected 180-degree angle; ergo a six-equiangular subdivision of spherical unity's 
360 degrees into 60-degree omniequiangularity; ergo a geometrically proven 
isotropic vector matrix operational evolvement field. 

 841.17  With our operationally considerate four tools of divider, straightedge and 
scriber and measurably manipulable scribable system as a material object (in this 
case, a sheet of paper; later, four sheets of paper), and with our constructionally 
proven symmetrical subdivision of a circle into six equilateral triangles and their 
six chord- enclosed segments, we now know that all the angles of the six 
equilateral triangles around center X are of 60 degrees; ergo, the six triangles are 
also equiangular. We know that the six circumferential chords are equal in length 
to the six radii. This makes it possible to equate rationally angular and linear 
accelerations, using the unit-radius chord length as the energy-vector module of 
all physical-energy accelerations. We know that any one of the 12 lines of the 
equilaterally triangled circle are always either in 180-degree extension of, or are 
parallel to, three other lines. We may now take four of these hexagonally divided 
circles of paper. All four circular pieces of paper are colored differently and have 
different colors on their opposite faces; wherefore, there are eight circular faces in 
eight colors paired in opposite faces, e.g., red and orange, yellow and green, blue 



and violet, black and white. 

 841.18  We will now take the red-orange opposite-faced construction-paper 
circle. We fold it first on its (PM)-(PN) axis so that the red is hidden inside and 
we see only an orange half-circle's two-ply surface. We next unfold it again, 
leaving the first fold as a crease. Next we fold the circle on its RX axis so that the 
orange face is inside and the red is outside the two-ply, half-circled foldup. We 
unfold again, leaving two crossing, axially folded creases in the paper. We next 
fold the same paper circle once more, this time along its JS axis in such a manner 
that the orange is inside and once again only the red surface is visible, which is 
the two-ply, half-circle folded condition. 

 841.19  We now unfold the red-orange opposite-faced colored-paper circle, 
leaving two positive and one negative creases in it. We will find that the circle of 
paper is now inclined by its creases to take the shape of a double tetrahedron bow 
tie, as seen from its openings end with the orange on the inside and the red on the 
outside. We may now insert a bobby pin between points (PM) and (PN), 
converting this hexagonally subdivided and positively__negatively folded circle 
back into the mutually congruent PX edge, two (hinge-bonded, bivalent) 
tetrahedra: JKPX and RSPX. 

 841.20  We may now fold the other three circles into similar, edge-bonded, 
tetrahedral bow-tie constructions in such a manner that number two is yellow 
outside and green inside; number three of the 60-degree-folded bow ties is blue 
outside and violet inside; and the fourth bow tie, identical to the other three bow 
ties' geometrical aspects of 60-degree equiangularity and equiradius chord edges, 
is black outside and white inside. 

 841.21  We may take any two of these bow ties__say, the orange inside and the 
green inside__and fasten each of their outside corners with bobby pins, all of their 
radii being equal and their hinges accommodating the interlinkage. 



Fig. 841.22 

841.22  Each of these paired bow-tie assemblies, the orange-green insiders and 
the violet-white insiders, may now be fastened bottom-to-bottom to each other at 
the four external fold ends of the fold cross on their bottoms, with those radial 
crosses inherently congruent. This will reestablish and manifest each of the four 
original circles of paper, for when assembled symmetrically around their common 
center, they will be seen to be constituted of four great circles intersecting each 
other through a common center in such a manner that only two circular planes 
come together at any other than their common center point and in such a manner 
that each great circle is divided entirely into six equilateral triangular areas, with 
all of the 12 radii of the system equilengthed to the 24 circumferential chords of 
the assembly. Inasmuch as each of the 12 radii is shared by two great circle 
planes, but their 24 external chords are independent of the others, the seeming 
loss of 12 radii of the original 24 is accounted for by the 12 sets of congruent 
pairs of radii of the respective four hexagonally subdivided great circles. This 
omniequal line and angle assembly, which is called the vector equilibrium, and its 
radii-chord vectors accommodate rationally and simultaneously all the angular 
and linear acceleration forces of physical Universe experiences. 

Fig. 841.30 

841.30  Trisection by Inherent Axial Spin of Systems 

 841.31  The 12 great circles of the vector equilibrium's hemispherical self-
halvings inherently__and inadvertently__centrally trisect each of the vector 
equilibrium's eight equiangle spherical triangles, centrally subdividing those 
triangles into twelve 30-degree angles. 

 842.00  Generation of Bow Ties 



Fig. 841.22 Foldability of Four Great Circles of Vector Equilibrium. 
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Fig. 841.30 Trisection by Inherent Axial Spin: The 12 great circles of the vector 
equilibrium inherently trisect each of its eight equiangular faces, centrally subdividing 
each of them into twelve 30-degree angles. 
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 842.01  When we consider the "jitterbug" vector equilibrium contracting into the 
icosahedron, bearing in mind that it is all double-bonded, we discover that, when 
the jitterbug gets to the octahedron phase, there really are two octahedra there.... 
Just as when you get three great circles, each one is doubled so that there are 
really six.... In making my tests, taking whole great circles of paper, doing my 
spherical trigonometry, learning the central angles, making those bow ties as a 
complex, which really amounts to tetrahedra bonded edge-to-edge with a common 
center, they link up as a chain and finally come together to make the icosahedron 
in a very asymmetrical manner. The 10, 12, and 15 great circles re-establish 
themselves, and every one of them can be folded. 

 842.02  You cannot make a spherical octahedron or a spherical tetrahedron by 
itself. You can make a spherical cube with two spherical tetrahedra in the pattern 
of the six great circles of the vector equilibrium. It becomes a symmetrically 
triangulated cube. In fact, the cube is not structurally stabilized until each of its six 
unstable, square-based, pyramidal half-octahedra are subdivided respectively into 
two tetrahedra, because one tetrahedron takes care of only four of the eight 
vertexes. For a cube to be triangulated, it has to have two tetrahedra. 

 842.03  There is no way to make a single spherical tetrahedron: its 109° 28' of 
angle cannot be broken up into 360-degree-totaling spherical increments. The 
tetrahedron, like the octahedron, can be done only with two tetrahedra in 
conjunction with the spherical cube in the pattern of the six great circles of the 
vector equilibrium. 

 842.04  Nor can we project the spherical octahedron by folding three whole great 
circles. The only way you can make the spherical octahedron is by making the six 
great circles with all the edges double__exactly as you have them in the vector 
equilibrium__as a strutted edge and then it contracts and becomes the octahedron. 

 842.05  There is a basic cosmic sixness of the two sets of tetrahedra in the vector 
equilibrium. There is a basic cosmic sixness also in an octahedron minimally-
great-circle- produced of six great circles; you can see only three because they are 
doubled up. And there are also the six great circles occurring in the icosahedron. 
All these are foldable of six great circles which can be made out of foldable disks. 

 842.06  This sixness corresponds to our six quanta: our six vectors that make one 
quantum. 



 842.07  There are any number of ways in which the energy can go into the figure- 
eight bow ties or around the great circle. The foldability reveals holdings patterns 
of energy where the energy can go into local circuits or go through the points of 
contact. One light year is six trillion miles, and humans see Andromeda with 
naked eye one million light years away, which means six quintillion miles. You 
can reflect philosophically on some of the things touch does, like making people 
want to get their hands on the coin, the key, or whatever it may be. This is a 
typical illustration of total energy accounting, which all society must become 
conversant with in short order if we are to pass through the crisis and flourish 
upon our planet. If we do succeed, it will be because, among other planetary 
events, humans will have come to recognize that the common wealth equating 
accounting must be one that locks fundamental and central energy 
incrementations-such as kilowatt hours-to human physical-energy work capability 
and its augmentation by the mind- comprehending employability of generalized 
principles of Universe, as these may be realistically appraised in the terms of 
increasing numbers of days for increasing numbers of lives we are thus far 
technically organized to cope with, while accommodating increasing hours and 
distances of increasing freedoms for increasing numbers of human beings. All of 
this fundamental data can be introduced into world computer memories, which 
can approximately instantly enlighten world humanity on its increasingly more 
effective options of evolutionary cooperation and fundamentally spontaneous 
social commitment. 

Next Chapter: 900.00 
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