
900.00  MODELABILITY 

900.01  Definition: Modelability 

 900.10  Modelability 

 900.11  Modelability is topologically conceptual in generalized principle 
independent of size and time: ergo, conceptual modelability is metaphysical. 

 900.12  Conceptual formulation is inherently empirical and as such is always 
special case sizing and always discloses all the physical characteristics of 
existence in time. 

 900.20  Synergetics 

 900.21  Synergetics is a book about models: humanly conceptual models; lucidly 
conceptual models; primitively simple models; rationally intertransforming 
models; and the primitively simple numbers uniquely and holistically identifying 
those models and their intertransformative, generalized and special case, number-
value accountings. 

 900.30  Model vs Form 

 900.31  Model is generalization; form is special case. 

 900.32  The brain in its coordination of the sensing of each special case 
experience apprehends forms. Forms are special case. Models are generalizations 
of interrelationships. Models are inherently systemic. Forms are special case 
systems. Mind can conceptualize models. Brains can apprehend forms. 

 900.33  Forms have size. Models are sizeless, representing conceptuality 
independent of size. 

901.00  Basic Disequilibrium LCD Triangle 



 901.01  Definition 

 901.02  The Basic Disequilibrium 120 LCD Spherical Triangle of synergetics is 
derived from the 15-great-circle, symmetric, three-way grid of the spherical 
icosahedron. It is the lowest common denominator of a sphere's surface, being 
precisely 1/120th of that surface as described by the icosahedron's 15 great circles. 
The trigonometric data for the Basic Disequilibrium LCD Triangle includes the 
data for the entire sphere and is the basis of all geodesic dome calculations. (See 
Sec.612.00.) 

Fig. 901.03 

Fig. 901.03 

901.03  As seen in Sec. 610.20 there are only three basic structural systems in 
Universe: the tetrahedron, octahedron, and icosahedron. The largest number of 
equilateral triangles in a sphere is 20: the spherical icosahedron. Each of those 20 
equiangular spherical triangles may be subdivided equally into six right triangles 
by the perpendicular bisectors of those equiangular triangles. The utmost number 
of geometrically similar subdivisions is 120 triangles, because further spherical-
triangular subdivisions are no longer similar. The largest number of similar 
triangles in a sphere that spheric unity will accommodate is 120: 60 positive and 
60 negative. Being spherical, they are positive and negative, having only common 
arc edges which, being curved, cannot hinge with one another; when their 
corresponding angle-and-edge patterns are vertex-mated, one bellies away from 
the other: concave or convex. When one is concave, the other is convex. (See 
Illus. 901.03 and drawings section.) 

 901.04  We cannot further subdivide the spherical icosahedron's equiangular 
triangles into similar, half-size, equiangular triangles, but we can in the planar 
icosahedron. When the sides of the triangle in the planar icosahedron are bisected, 
four similar half-size triangles result, and the process can be continued 
indefinitely. But in the spherical icosahedron, the smaller the triangle, the less the 
spherical excess; so the series of triangles will not be similar. Each corner of the 
icosahedron's equiangular triangles is 72 degrees; whereas the corners of its mid-
edge-connecting triangle are each approximately 63 degrees. 

 901.10  Geodesic Dome Calculations 
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Fig. 901.03 Basic Right Triangle of Geodesic Sphere: Shown here is the basic data for the 31 great 
circles of the spherical icosahedron, which is the basis for all geodesic dome calculations. The basic 
right triangle as the lowest common denominator of a sphere's surface includes all the data for the 
entire sphere. It is precisely 1/120th of the sphere's surface and is shown as shaded on the 31-great-
circle- sphere (A). An enlarged view of the same triangle is shown (B) with all of the basic data 
denoted. There are three different external edges and three different internal edges for a total of six 
different edges. There are six different internal angles other than 60º or 90º. Note that all data given is 
spherical data, i.e. edges are given as central angles and face angles are for spherical triangles. No 
chord factors are shown. Those not already indicated elsewhere are given by the equation 2 
sin(theta/2), where theta is the central angle. Solid lines denote the set of 15 great circles. Dashed lines 
denote the set of 10 great circles. Dotted lines denote the set of 6 great circles. 
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Fig. 901.03 The Basic Disequilibrium 120 LCD Triangle: 

12 vertexes surrounded by 10 converging angles 12×10=120

20 vertexes surrounded by 6 converging angles 20×6=120

30 vertexes surrounded by 4 converging angles 30×4=120
-----

360 converging
angles

The 360 convergent angles must share the 720° reduction from absolute sphere to 
chorded sphere: 720/360 = 2° per each corner; 6° per each triangle. 

All of the spherical excess 6° has been massaged by the irreducibility of the 90° and 60° 

corners into the littlest corner. .: 30 36. 

In reducing 120 spherical triangles described by the 15 great circles to planar faceted 
polyhedra, the spherical excess 6° would be shared proportionately by the 90°-60°-30° 
flat relationship = 3:2:1. 

The above tells us that freezing 60-degree center of the icosa triangle and sharing the 6-
degree spherical excess find A Quanta Module angles exactly congruent with the icosa's 
120 interior angles. 
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 901.11  When two great-circle geodesic lines cross, they form two sets of similar 
angles, any one of which, paired with the other, will always add to 180º. (This we 
also learned in plane geometry.) When any one great circle enters into__or exits 
from__a spherical triangle, it will form the two sets of similar angles as it crosses 
the enclosing great-circle-edge-lines of that triangle. 

 901.12  As in billiards or in electromagnetics, when a ball or a photon caroms off 
a wall it bounces off at an angle similar to that at which it impinged. 

 901.13  If a great-circle-describing, inexhaustibly re-energized, satellite ball that 
was sufficiently resilient to remain corporeally integral, were suddenly to 
encounter a vertical, great-circle wall just newly mounted from its parent planet's 
sphere, it would bounce inwardly off that wall at the same angle that it would 
have traversed the same great-circle line had the wall not been there. And had two 
other great-circle walls forming a right spherical triangle with the first wall been 
erected just as the resilient ball satellite was hitting the first great-circle wall, then 
the satellite ball would be trapped inside the spherical-triangle-walled enclosure, 
and it would bounce angularly off the successively encountered walls in the 
similar-triangle manner unless it became aimed either at a corner vertex of the 
triangular wall trap, or exactly perpendicularly to the wall, in either of which 
cases it would be able to escape into the next spherical area Lying 180º ahead 
outside the first triangle's walls. 

 901.14  If, before the satellite bouncingly earned either a vertexial or 
perpendicular exit from the first-described spherical triangle (which happened to 
be dimensioned as one of the 120 LCD right triangles of the spherical 
icosahedron) great-circle walls representing the icosahedron's 15 complete great 
circles, were erect__thus constructing a uniform, spherical, wall patterning of 120 
(60 positive, 60 negative) similar spherical, right triangles__we would find the 
satellite sphere bouncing around within one such spherical triangle at exactly the 
same interior or exiting angles as those at which it would have crossed, entered 
into, and exited, each of those great-circle boundaries of those 120 triangles had 
the wall not been so suddenly erected. 



 901.15  For this reason the great-circle interior mapping of the symmetrically 
superimposed other sets of 10 and 6 great circles, each of which__together with 
the 15 original great circles of the icosahedron__produces the 31 great circles of 
the spherical icosahedron's total number of symmetrical spinnabilities in respect 
to its 30 mid-edge, 20 mid-face, and 12 vertexial poles of half-as-many-each axes 
of spin. (See Sec. 457 .) These symmetrically superimposed, 10- and 6-great-
circles subdivide each of the disequilibrious 120 LCD triangles into four lesser 
right spherical triangles. The exact trigonometric patterning of any other great 
circles orbiting the 120-LCD-triangled sphere may thus be exactly plotted within 
any one of these triangles. 

 901.16  It was for this reason, plus the discovery of the fact that the 
icosahedron__among all the three-and-only prime structural systems of Universe 
(see Sec. 610.20) __required the least energetic, vectorial, structural investment 
per volume of enclosed local Universe, that led to the development of the Basic 
Disequilibrium 120 LCD Spherical Triangle and its multifrequenced triangular 
subdivisioning as the basis for calculating all highfrequency, triangulated, 
spherical structures and structural subportions of spheres; for within only one 
disequilibrious LCD triangle were to be found all the spherical chord-factor 
constants for any desired radius of omnisubtriangulated spherical structure. 

 901.17  In the same way it was discovered that local, chord-compression struts 
could be islanded from one another, and could be only tensionally and non-inter-
shearingly connected to produce stable and predictably efficient enclosures for 
any local energetic environment valving uses whatsoever by virtue of the 
approximately unlimited range of frequency-and-angle, subtriangle-structuring 
modulatability. 

 901.18  Because the 120 basic disequilibrious LCD triangles of the icosahedron 
have 2 l/2 times less spherical excess than do the 48 basic equilibrious LCD 
triangles of the vector equilibrium, and because all physical realizations are 
always disequilibrious, the Basic Disequilibrium 120 LCD Spherical Triangles 
become most realizably basic of all general systems' mathematical control 
matrixes. 
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 901.19  Omnirational Control Matrix: Commensurability of Vector 
Equilibrium and Icosahedron The great-circle subdivisioning of the 48 basic 
equilibrious LCD triangles of the vector equilibrium may be representationally 
drawn within the 120 basic disequilibrious LCD triangles of the icosahedron, thus 
defining all the aberrations__and their magnitudes__existing between the 
equilibrious and disequilibrious states, and providing an omnirational control 
matrix for all topological, trigonometric, physical, and chemical accounting. 

 902.00  Properties of Basic Triangle 

Fig. 902.01 

902.01  Subdivision of Equilateral Triangle: Both the spherical and planar 
equilateral triangles may be subdivided into six equal and congruent parts by 
describing perpendiculars from each vertex of the opposite face. This is 
demonstrated in Fig. 902.01, where one of the six equal triangles is labeled to 
correspond with the Basic Triangle in the planar condition. 

Fig. 902.10 

902.10  Positive and Negative Alternation: The six equal subdivision triangles 
of the planar equilateral triangle are hingeable on all of their adjacent lines and 
foldable into congruent overlays. Although they are all the same, their 
dispositions alternate in a positive and negative manner, either clockwise or 
counterclockwise. 

Fig. 902.20 

902.20  Spherical Right Triangles: The edges of all spherical triangles are arcs 
of great circles of a sphere, and those arc edges are measured in terms of their 
central angles (i.e., from the center of the sphere). But plane surface triangles 
have no inherent central angles, and their edges are measured in relative lengths 
of one of themselves or in special- case linear increments. Spherical triangles 
have three surface (corner) angles and three central (edge) angles. The basic data 
for the central angles provided below are accurate to 1/1,000 of a second of arc. 
On Earth 

1 nautical mile = 1 minute of arc

1 nautical mile = approximately 6,000 feet

1 second of arc = approximately 100 feet

1/l,000 second of arc = approximately 1/10 foot

1/1,000 second of arc = approximately 1 inch

These calculations are therefore accurate to one inch of Earth's arc. 



Fig. 902.01. 
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Fig. 902.10. 
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Fig. 902.20. 
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 902.21  The arc edges of the Basic Disequilibrium 120 LCD Triangle as 
measured by their central angles add up to 90° as do also three internal surface 
angles of the triangle's ACB corner: 

BCE = 20° 54' 18.57" = ECF

ECD = 37° 22' 38.53" = DCE

DCA = 31° 43' 02.9"
--------------- 

= ACD 

90° 00' 00"

 902.22  The spherical surface angle BCE is exactly equal to two of the arc edges 
of the Basic Disequilibrium 120 LCD Triangle measured by their central angle. 
BCE = arc AC = arc CF = 20° 54' 18.57". 

Fig. 902.30 

902.30  Surface Angles and Central Angles: The Basic Triangle ACB can be 
folded on the lines CD and CE and EF. We may then bring AC to coincide with 
CF and fold BEF down to close the tetrahedron, with B congruent with D because 
the arc DE = arc EB and arc BF = arc AD. Then the tetrahedron's corner C will fit 
exactly down into the central angles AOC, COB, and AOB. (See Illus. 901.03 and 
902.30.) 

 902.31  As you go from one sphere-foldable great-circle set to another in the 
hierarchy of spinnable symmetries (the 3-, 4-, 6-, 12-sets of the vector 
equilibrium's 25- great-circle group and the 6-, 10-, 15-sets of the icosahedron's 
31-great-circle group), the central angles of one often become the surface angles 
of the next-higher-numbered, more complex, great-circle set while simultaneously 
some (but not all) of the surface angles become the respective next sphere's 
central angles. A triangle on the surface of the icosahedron folds itself up, 
becomes a tetrahedron, and plunges deeply down into the congruent central 
angles' void of the icosahedron (see Sec. 905.47 ). 

 902.32  There is only one noncongruence- the last would-be hinge, EF is an 
external arc and cannot fold as a straight line; and the spherical surface angle EBF 
is 36 degrees whereas a planar 30 degrees is called for if the surface is cast off or 
the arc subsides chordally to fit the 90-60-30 right plane triangle. 
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Fig. 902.30. 
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 902.33  The 6 degrees of spherical excess is a beautiful whole, rational number 
excess. The 90-degree and 60-degree corners seem to force all the excess into one 
corner, which is not the way spherical triangles subside. All the angles lose excess 
in proportion to their interfunctional values. This particular condition means that 
the 90 degrees would shrink and the 60 degrees would shrink. I converted all the 
three corners into seconds and began a proportional decrease study, and it was 
there that I began to encounter a ratio that seemed rational and had the number 31 
in one corner. This seemed valid as all the conditions were adding up to 180 
degrees or 90 degrees as rational wholes even in both spherical and planar 
conditions despite certain complementary transformations. This led to the intuitive 
identification of the Basic Disequilibrium 120 LCD Triangle's foldability (and its 
fall-in-ability into its own tetra-void) with the A Quanta Module, as discussed in 
Sec. 910 which follows. 

Next Section: 905.00 
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