
 905.70  Summary: Wave Propagation Model 

 905.71  Both in the spherical vector equilibrium and in the disequilibrious 
icosahedral spherical system, the prime number five is produced by the 
fundamental allspace-filling complementarity of the l-volume tetrahedron and the 
4-volume octahedron. 

__ Symmetrical: 1 + 4 = 5

__ Asymmetrical: 4 + 1 = 5

The effect is symmetrical when the tetrahedron's four vertexes simultaneously 
pulse outwardly through their opposite void triangles to produce the "star 
tetrahedron," one outwardly-pointing tetrahedron superimposed on each of the 
four faces of a nuclear tetrahedron: i.e., 1 + 4 = 5. The effect is asymmetrical 
when one outwardly-pointing tetrahedron is superimposed on one face of one 
octahedron: i.e., 4 + 1 = 5. 

 905.72  We now understand how the equilibrious 48 basic triangles transform 
into the 120 disequilibrious basic triangles. The 120 (60 positive and 60 negative) 
LCD spherical triangles' central (or nuclear) angles are unaltered as we transform 
their eternal systemic patterning symmetry from (a) the octahedral form of 
l20/8=15 A Quanta Modules per each octa triangle; to (b) the icosahedron's 
120/20 = 6 A Quanta Modules per each icosa triangle; to (c) the dodecahedron's 
l20/l2 = 10 A Quanta Modules per each pentagon. This transformational 
progression demonstrates the experientially witnessable, wave-producing surface-
askewing caused by the 120-degree, alternating rotation of the icosahedron's 
triangles inside of the octahedron's triangles. Concomitant with this alternating 
rotation we witness the shuttling of the spherical vector equilibrium's 12 vertexial 
positions in a successive shifting-back-and-forth between the spherical 
icosahedron's 12 vertexial positions; as well as the wave-propagating symmetrical, 
polyhedral alterations of the inward-outward pulsations which generate surface 
undulations consequent to the radial contractions, at any one time, of only a 
fractional number of all the exterior vertexes, while a symmetrical set of vertexes 
remains unaltered. 

 905.73  This elucidates the fundamental, electromagnetic, inward-outward, and 
complex great-circling-around type of wave propagation, as does also the model 
of spheres becoming voids and all the voids becoming spheres, and their 
omniradiant wave propagation (see Sec. 1032). 
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 905.74  There are also the approximately unlimited ranges of frequency 
modulatabilities occasioned by the symmetrical subdivisioning of all the prime, 
equiangled, surface triangles of the tetrahedron, octahedron, and icosahedron. 
This additionally permitted wave undulation of surface pattern shifting is directly 
identified with the appearance of photons as spherically clustered and radiantly 
emittable tetrahedra (see Sec. 541.30). 

910.00  A and B Quanta Modules 

 910.01  All omni-closest-packed, complex, structural phenomena are 
omnisymmetrically componented only by tetrahedra and octahedra. Icosahedra, 
though symmetrical in themselves, will not close-pack with one another or with 
any other symmetrical polyhedra; icosahedra will, however, face-bond together to 
form open- network octahedra. 

 910.02  In an isotropic vector matrix, it will be discovered that there are only two 
omnisymmetrical polyhedra universally described by the configuration of the 
interacting vector lines: these two polyhedra are the regular tetrahedron and the 
regular octahedron. 

 910.10  Rational Fraction Elements 

 910.11  All other regular, omnisymmetric, uniform-edged, -angled, and -faceted, 
as well as several semisymmetric, and all other asymmetric polyhedra other than 
the icosahedron and the pentagonal dodecahedron, are described repetitiously by 
compounding rational fraction elements of the tetrahedron and octahedron. These 
elements are known in synergetics as the A and B Quanta Modules. They each 
have a volume of l/24th of a tetrahedron. 

 911.00  Division of Tetrahedron 

 911.01  The regular tetrahedron may be divided volumetrically into four identical 
Quarter-Tetrahedra, with all their respective apexes at the center of volume of the 
regular unit tetrahedron. (See Illus. 913.01.) The Quarter-Tetrahedra are irregular 
pyramids formed upon each of the four triangular faces of the original unit 
tetrahedra, with their four interior apexes congruent at the regular tetrahedron's 
volumetric center; and they each have a volume of one quarter of the regular 
tetrahedron's volume-1. 
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 911.02  Any of the Quarter-Tetrahedra may be further uniformly subdivided into 
six identical irregular tetrahedra by describing lines that are perpendicular 
bisectors from each vertex to their opposite edge of the Quarter-Tetrahedron. The 
three perpendicular bisectors cut each Quarter-Tetrahedron into six similar 
tetrahedral pieces of pie. Each one of the six uniformly symmetrical components 
must be l/6th of One Quarter, which is l/24th of a regular tetrahedron, which is the 
volume and description of the A Quanta Module. (See Illus. 913.01B.) 

 912.00  Division of Octahedron 

 912.01  The regular octahedron has a volume equivalent to that of four unit 
tetrahedra. The octahedron may be subdivided symmetrically into eight equal 
parts, as Eighth-Octahedra, by planes going through the three axes connecting its 
six vertexes. (See Illus. 916.01.) 

 912.02  The Quarter-Tetrahedron and the Eighth-Octahedron each have an 
equilateral triangular base, and each of the base edges is identical in length. With 
their equiangular-triangle bases congruent we can superimpose the Eighth-
Octahedron over the Quarter-Tetrahedron because the volume of the Eighth-
Octahedron is l/2 and the volume of the Quarter-Tetrahedron is 1/4. The volume 
of the Eighth-Octahedron is twice that of the Quarter-Tetrahedron; therefore, the 
Eighth-Octahedron must have twice the altitude because it has the same base and 
its volume is twice as great. 

 913.00  A Quanta Module 

Fig. 913.01 

913.01  The A Quanta Module is l/6th of a Quarter-Tetrahedron. The six 
asymmetrical components of the Quarter-Tetrahedron each have a volume of 
l/24th of the unit tetrahedron. They are identical in volume and dimension, but 
three of them are positive and three of them are negative. (See Illus. 913.01.) 

 913.10  Positive and Negative: The positive and negative A Quanta Modules 
(the + and the -) will not nest in one another congruently despite identical angles, 
edges, and faces. The pluses are inside-out minuses, which can be shown by 
opening three of their six edges and folding the three triangles' hinged edges in the 
opposite direction until their edges come together again. 



Fig. 913.01 Division of the Quarter-Tetrahedron into Six Parts: A Quanta Module: 

A.  The regular tetrahedron is divided volumetrically into four identical quarters. 
B.  The quarter-tetrahedron is divided into six identical irregular tetrahedra, which appear as three right-hand and three left-

hand volumetric units each equal in volume to 1/24th of the original tetrahedron. This unit is called the A Module. 
C.  The plane net which will fold into either left or right A modules is shown. Vertex C is at the vertex of the regular 

tetrahedron. Vertex E is at the center of gravity of the tetrahedron. Vertex D is at the mid-edge of the tetrahedron. Vertex 
F is at the center of the tetrahedron face. Note that AD = FB, DE = EB, and AC = CF. 
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 913.11  The A Quanta Module triangle is possibly a unique scalene in that 
neither of its two perpendiculars bisect the edges that they intersect. It has three 
internal foldables and no "internally contained" triangle. It drops its 
perpendiculars in such a manner that there are only three external edge 
increments, which divide the perimeter into six increments of three pairs. 

 914.00  A Quanta Module: Foldability 

 914.01  The A Quanta Module can be unfolded into a planar triangle, an 
asymmetrical triangle with three different edge sizes, yet with the rare property of 
folding up into a whole irregular tetrahedron. 

 914.02  An equilateral planar triangle AAA may be bisected in each edge by 
points BBB. The triangle AAA may be folded on lines BB, BB, BB, and points A, 
A, A will coincide to form the regular tetrahedron. This is very well known. 

 914.10  Four Right Angles: In respect to the A Quanta Module flatout triangle 
or infolded to form the irregular tetrahedron, we find by the method of the 
module's construction (by perpendicular planes carving apart) that there are four 
right angles (see Illus. 913.01C): 

EFB EDC

EFC ADC

 914.20  Unfolding into a Flat Triangle: If we go to the vertex at E and break 
open the edges ED and AD, we can hinge open triangle EBF on hinge line EF. We 
can then break open the edge AC and fold triangle ADC, as well as folding out the 
two triangles DEC and CEF, which are connected by the hinge EC, so that now 
the whole asymmetric A Quanta Module is stretched out flat as a triangle. 

 914.21  The A Quanta Module unfolds into a scalene triangle; that is, all of its 
non- degree angles are different, and all are less than 90 degrees. Two of the folds 
are perpendicular to the triangle's sides, thus producing the four right angles. The 
A Quanta Module triangle may be the only triangle fulfilling all the above stated 
conditions. 



 914.30  Spiral Foldability: The foldability of the A Quanta Module planar 
triangle differs from the inter-mid-edge foldability of the equilateral or isosceles 
triangle. All the mid-edge-foldable equilateral or isosceles triangles can all form 
tetrahedra, regular or irregular. In the case of the folded equilateral or isosceles 
triangle, the three triangle corners meet together at one vertex: like petals of a 
flower. In the case of the inter-mid- edge-folding scalene triangle, the three 
corners fail to meet at one vertex to form a tetrahedron. 

 915.00  Twinkle Angle 

 915.01  The faces of an A Quanta Module unfold to form a triangle with 84° 44' 
(30° 00' + 35° 16' + 19° 28') as its largest angle. This is 5° 16' less than a right 
angle, and is known as the twinkle angle in synergetics (see Illus. 913.01C). 

 915.02  There is a unique 5° 16'-ness relationship of the A Quanta Module to the 
symmetry of the tetrahedron-octahedron allspace-filling complementation and 
other aspects of the vector equilibrium that is seemingly out of gear with the 
disequilibrious icosahedron. It has a plus-or-minus incrementation quality in 
relation to the angular laws common to the vector equilibrium. 

 915.10  A Quanta Module Triangle and Basic Disequilibrium 120 LCD 
Triangle: The angles of fold of the A Quanta Module triangle correspond in 
patterning to the angles of fold of the Basic Disequilibrium 120 LCD Triangle, the 
1/120th of a sphere whose fundamental great circles of basic symmetry subdivide 
it in the same way. The angles are the same proportionally when the spherical 
excess subsides proportionally in all three corners. For instance, the angle ACB in 
Illus. 913.01C is not 90 degrees, but a little less. 

 915.11  It is probable that these two closely akin triangles and their respective 
folded tetrahedra, whose A Module Quantum phase is a rational subdivider 
function of all the hierarchy of atomic triangulated substructuring, the 120 Basic 
Disequilibrium LCD triangles and the A Module triangles, are the same quanta 
reoccurrent in their most powerful wave-angle oscillating, intertransformable 
extremes. 

 915.20  Probability of Equimagnitude Phases: The 6° spherical excess of the 
Basic Disequilibrium 120 LCD Triangle, the 5° 16' "twinkle angle" of the A 
Quanta Module triangle, and the 7° 20' "unzipping angle" of birth, as in the DNA 
tetrahelix, together may in time disclose many equimagnitude phases occurring 
between complementary intertransforming structures. 

 916.00  B Quanta Module 



Fig. 916.01 

916.01  The B Quanta Module is 1/6th of the fractional unit described by 
subtracting a Quarter-Tetrahedron from an Eighth-Octahedron. The six 
asymmetrical components of the fractional unit so described each have a volume 
of 1/24th of the unit tetrahedron. They are identical in volume and dimensioning, 
but three of them are positive and three of them are negative. (See Illus. 916.01.) 

 916.02  When the Eighth-Octahedron is superimposed on the Quarter-
Tetrahedron, the top half of the Eighth-Octahedron is a fractional unit, like a 
concave lid, with a volume and weight equal to that of the Quarter-Tetrahedron 
below it. We can slice the fractional unit by three planes perpendicular to its 
equilateral triangular base and passing through the apex of the Quarter-
Tetrahedron, through the vertexes of the triangular base, and through the mid-
points of their respective opposite edges, separating it into six equidimensional, 
equivolume parts. These are B Quanta Modules. 

 916.03  B Quanta Modules are identical irregular tetrahedra that appear as three 
positive (outside-out) and three negative (outside-in) units. Each of the B Quanta 
Modules can be unfolded into a planar, multitriangled polygon. (See Illus. 
916.01F.) 

Next Section: 920.00 
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Fig. 916.01 Division of Eighth-Octahedron into Six Parts: B Quanta Module: The regular octahedron (A) is divided 
into eight identical units (B) equaling 1/8 of the volume of the octahedron. The quarter tetrahedron as defined by 
six A Modules (C) is subtracted from the 1/8-octahedron (D). This fractional unit is then subdivided into six 
identical irregular tetrahedra that appear as three right-hand and three left-hand units and are referred to as B 
Modules. They are equal in volume to the A Modules and are consequently also 1/24th of the regular tetrahedron. 
In (F) is shown the plane net which will fold into either the right or left B Module. Vertex A is at the vertex of the 
octahedron. Vertex C is at the mid-edge of the octahedron. Vertex E is at the center of gravity of the octahedron. 
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