
 986.480  Consideration 13: Correspondence of Surface Angles and Central 
Angles 

 986.481  It was next to be noted that spherical trigonometry shows that nature's 
smallest common denominator of system-surface subdivisioning by any one type 
of the seven great-circle-symmetry systems is optimally accomplished by the 
previously described 120 spherical-surface triangles formed by the 15 great 
circles, whose central angles are approximately 

20.9°

37.4°

31.7°
------
90°

whereas their surface angles are 36 degrees at A, 60 degrees at B, and 90 degrees 
at C. 

 986.482  We recall that the further self-subdividing of the 120 triangles, as 
already defined by the 15 great circles and as subdividingly accomplished by the 
icosahedron's additional 6- and 10-great-circle spinnabilities, partitions the 120 
LCD triangles into 480 right triangles of four types: ADC, CDE, CFE, and EFB-
with 60 positive and 60 negative pairs of each. (See Figs. 901.03 and 986.314.) 
We also recall that the 6- and 10-great- circle-spun hemispherical gridding further 
subdivided the 120 right triangles__ACB__formed by the 15 great circles, which 
produced a total of 12 types of surface angles, four of them of 90 degrees, and 
three whose most acute angles subdivided the 90-degree angle at C into three 
surface angles: ACD__31.7 degrees; DCE__37.4 degrees; and ECB__20.9 degrees, 
which three surface angles, we remember, correspond exactly to the three central 
angles COB, BOA, and COA, respectively, of the triacontahedron's tetrahedral T 
Quanta Module ABCOt. 

 986.500  E Quanta Module 

 986.501  Consideration 14: Great-circle Foldable Discs 
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Fig. 986.502 

986.502  With all the foregoing events, data, and speculative hypotheses in mind, 
I said I think it would be worthwhile to take 30 cardboard great circles, to divide 
them into four 90-degree quadrants, then to divide each of the quadrants into 
three angles__COA, 20.9 degrees; AOB, 37.4 degrees; and BOC, 31.7 
degrees__and then to score the cardboard discs with fold lines in such a manner 
that the four lines CO will be negatively outfolded, while the lines AO and BO 
will be positively infolded, so that when they are altogether folded they will form 
four similar-arc-edged tetrahedra ABCO with all of their four CO radii edges 
centrally congruent. And when 30 of these folded great-circle sets of four T 
Quanta Module tetrahedra are each triple-bonded together, they will altogether 
constitute a sphere. This spherical assemblage involves pairings of the three 
intercongruent interface triangles AOC, COB, and BOA; that is, each folded great-
circle set of four tetra has each of its four internal triangular faces congruent with 
their adjacent neighbor's corresponding AOC, COB, and BOC interior triangular 
faces. (See Fig. 986.502.) 

 986.503  I proceeded to make 30 of these 360-degree-folding assemblies and 
used bobby pins to lock the four CO edges together at the C centers of the 
diamond-shaped outer faces. Then I used bobby pins again to lock the 30 
assemblies together at the 20 convergent A vertexes and the 12 convergent B 
sphere-surface vertexes. Altogether they made a bigger sphere than the calculated 
radius, because of the accumulated thickness of the foldings of the construction 
paper's double-walled (trivalent) interfacing of the 30 internal tetrahedral 
components. (See Fig. 986.502D.) 

Fig. 986.504 

986.504  Instead of the just previously described 30 assemblies of four identical 
spherically central tetrahedra, each with all of their 62 vertexes in the unit-radius 
spheres, I next decided to make separately the 120 correspondingly convergent 
(non-arc-edged but chorded) tetrahedra of the tetravolume-5 rhombic 
triacontahedron, with its 30 flat ABAB diamond faces, the center C of which 
outer diamond faces is criss-crossed at right angles at C by the short axis A-A of 
the diamond and by its long axis B-B, all of which diamond bounding and criss-
crossing is accomplished by the same 15 greatcircle planes that also described the 
30 diamonds' outer boundaries. As noted, the criss-crossed centers of the diamond 
faces occur at C, and all the C points are at the prime-vector-radius distance 
outwardly from the volumetric center O of the rhombic triacontahedron, while 
OA is 1.07 of vector unity and OB is 1.17 of vector unity outward, respectively, 
from the rhombic triacontahedron's symmetrical system's center of volume O. 
(See Figs. 986.504A and 986.504B.) 



Fig. 986.502 Thirty Great-circle Discs Foldable into Rhombic Triacontahedron System: Each of 
the four degree quadrants, when folded as indicated at A and B, form separate T Quanta Module 
tetrahedra. Orientations are indicated by letter on the great-circle assembly at D. 
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Fig. 986.504 Profile of Quadrants of Sphere and Rhombic Triacontahedron: Central angles and ratios of radii are indicated at A. Orientation of modules 
in spherical assembly is indicated by letters at B. 
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Fig. 986.505 

986.505  To make my 120 OABC tetrahedra I happened to be using the same 
construction paperboard I had used before in making the 30 arc-edged great-circle 
components. The construction paperboard happened to come in sheets 24 by 36 
inches, i.e., two feet by three feet. In making the previously described spherical 
triacontahedron out of these 24-by-36-inch sheets, I had decided to get the most 
out of my material by using a 12-inch-diameter circle, so that I could lay out six 
of them tangentially within the six 12-inch-square modules of the paperboard to 
produce the 30 foldable great circles. This allowed me to cut out six intertangent 
great circles from each 24-by-36-inch construction paper sheet. Thirty great 
circles required only five sheets, each sheet producing six circles. To make the 12 
separate T Quanta Module tetrahedra, I again spontaneously divided each of the 
same-size sheets into six squares with each of the six circles tangent to four edges 
of each square (Fig. 986.505). 

 986.506  In starting to make the 120 separate tetrahedra (60 positive, 60 
negative__known as T Quanta Modules) with which to assemble the 
triacontahedron- which is a chord-edged polyhedron vs the previous "spherical" 
form produced by the folded 15-great-circle patterning__I drew the same 12-inch-
edge squares and, tangentially within the latter, drew the same six 12-inch-
diameter circles on the five 24-by-36-inch sheets, dividing each circle into four 
quadrants and each quadrant into three subsections of 20.9 degrees, 37.4 degrees, 
and 31.7 degrees, as in the T Quanta Modules. 

 986.507  I planned that each of the quadrants would subsequently be cut from the 
others to be folded into one each of the 120 T Quanta Module tetrahedra of the 
triacontahedron. This time, however, I reminded myself not only to produce the 
rhombic triacontahedron with the same central angles as in the previous spheric 
experiment's model, but also to provide this time for surfacing their clusters of 
four tetrahedra ABCO around their surface point C at the mid-crossing point of 
their 30 flat diamond faces. Flat diamond faces meant that where the sets of four 
tetra came together at C, there would not only have to be four 90-degree angles on 
the flat surface, but there would be eight internal right angles at each of the 
internal flange angles. This meant that around each vertex C corner of each of the 
four T Quanta Modules OABC coming together at the diamond face center C 
there would have to be three 90-degree angles. 



Fig. 986.505 Six Intertangent Great-circle Discs in 12-inch Module Grid: The four 90 
degree quadrants are folded at the central angles indicated for the T Quanta Module. 
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Fig. 986.508 

986.508  Looking at my "one-circle-per-each-of-six-squares" drawing, I saw that 
each sheet was divided into 24 quadrant blanks, as in Fig. 986.508A986.508A. 
Next I marked the centers of each of the six circles as point O, O being the 
volumetric center of the triacontahedral system. Then I realized that, as 
trigonometrically calculated, the flat, diamond-centered, right-angled, centrally 
criss-crossed point C of the triacontahedron's outer faces had to be at our 
primitive unit-vector-length distance outwardly from the system center O, 
whereas in the previous arc-edged 30-great-circle-folded model the outer vertex C 
had been at full- spherical-system-radius distance outwardly from O. In the 
spherical 15-great-circle-model, therefore, the triacontahedron's mid-flat-diamond-
face C would be at 0.07 lesser radial distance outwardly from O than would the 
diamond corner vertexes A and vertex A itself at a lesser radial distance 
outwardly from O than diamond corner vertex B. (See Fig. 986.504A.) 

 986.509  Thinking about the C corner of the described tetrahedron consisting 
entirely of 90-degree angles as noted above, I realized that the line C to A must 
produce a 90- degree-angle as projected upon the line OC", which latter ran 
vertically outward from O to C", with O being the volumetric center of the 
symmetrical system (in this case the rhombic triacontahedron) and with C" 
positioned on the perimeter exactly where vertex C had occurred on each of the 
previous arc-described models of the great circles as I had laid them out for my 
previous 15 great-circle spherical models. I saw that angle ACO must be 90 
degrees. I also knew by spherical trigonometry that the angle AOC would have to 
be 20.9 degrees, so I projected line OA outwardly from O at 20.9 degrees from the 
vertical square edge OC. 

 986.510  At the time of calculating the initial layout I made two mistaken 
assumptions: first, that the 0.9995 figure was critically approximate to 1 and could 
be read as 1; and second (despite Chris Kitrick's skepticism born of his confidence 
in the reliability of his calculations), that the 0.0005 difference must be due to the 
residual incommensurability error of the inherent irrationality of the 
mathematicians' method of calculating trigonometric functions. (See the 
Scheherazade Numbers discussed at Sec. 1230.) At any rate I could not lay out 
with drafting tools a difference of 0.0005 of six inches, which is 0.0030 of an 
inch. No draftsman can prick off a distance even ten times that size. (I continue to 
belabor these mistaken assumptions and the subsequent acknowledgments of the 
errors because it is always upon the occasion of my enlightened admission of 
error that I make my greatest discoveries, and I am thus eager to convey this truth 
to those seeking the truth by following closely each step of this development, 
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Fig. 986.508 Six Intertangent Great-circle Discs: Twelve-inch module grids divided into 
24 quadrant blanks at A Profile of rhombic triacontahedron superimposed on quadrant at 
B. 
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which leads to one of the most exciting of known discoveries.) 

 986.511  In order to produce the biggest model possible out of the same 24-by-36- 
inch construction paper blanks, I saw that vertex A of this new T Quanta Module 
model would have to lie on the same 12-inch circle, projecting horizontally from 
A perpendicularly (i.e., at right angles), upon OX at C. I found that the point of 90-
degree impingement of AC on OX occurred slightly inward (0.041, as we learned 
later by/trigonometry), vertically inward, from X. The symbol X now occurs on 
my layout at the point where the previous spherical model's central diamond 
vertex C had been positioned__-on the great-circle perimeter. Trigonometric 
calculation showed this distance between C and X to be 0.041 of the length of our 
unit vector radius. Because (1) the distance CO is established by the right-angled 
projection of A upon OX; and because (2) the length CO is also the prime vector 
of synergetics' isotropic vector matrix itself, we found by trigonometric 
calculation that when the distance from O to C is 0.9995 of the prime vector's 
length, that the tetravolume of the rhombic triacontahedron is exactly 5. 

 986.512  When the distance from O to C is 0.9995, then the tetravolume of the 
rhombic triacontahedron is exactly 5. OC in our model layout is now exactly the 
same as the vector radius of the isotropic vector matrix of our "generalized energy 
field." OC rises vertically (as the right-hand edge of our cut-out model of our 
eventually-to-be-folded T Quanta Module's model designing layout) from the 
eventual triacontahedron's center O to what will be the mid-diamond face point C. 
Because by spherical trigonometry we know that the central angles of our model 
must read successively from the right-hand edge of the layout at 20.9 degrees, 
37.4 degrees, and 31.7 degrees and that they add up to 90 degrees, therefore line 
OC' runs horizontally leftward, outward from O to make angle COC' 90 degrees. 
This is because all the angles around the mid-diamond criss-cross point C are 
(both externally and internally) 90 degrees. We also know that horizontal OC' is 
the same prime vector length as vertical OC. We also know that in subsequent 
folding into the T Quanta Module tetrahedron, it is a mathematical requirement 
that vertical OC be congruent with horizontal OC' in order to be able to have these 
edges fold together to be closed in the interior tetrahedral form of the T Quanta 
Module. We also know that in order to produce the required three 90-degree 
angles (one surface and two interior) around congruent C and C' of the finished T 
Quanta Module, the line C'B of our layout must rise at 90 degrees vertically from 
C' at the leftward end of the horizontal unit vector radius OC'. (See Fig. 
986.508C.) 



 986.513  This layout now demonstrates three 90-degree comers with lines OC 
vertical and OC' horizontal and of the same exact length, which means that the 
rectangle COC'C" must be a square with unit-vector-radius edge length OC. The 
vertical line C'C" rises from C' of horizontal OC' until it encounters line OB, 
which__to conform with the triacontahedron's interior angles as already 
trigonometrically established__must by angular construction layout run outwardly 
from O at an angle of 31.7 degrees above the horizontal from OC' until it engages 
vertical C'C" at B. Because by deliberate construction requirement the angle 
between vertical OC and OA has been laid out as 20.9 degrees, the angle AOB 
must be 37.4 degrees-being the remainder after deducting both 20.9 degrees and 
31.7 degrees from the 90-degree angle Lying between vertical OC and horizontal 
OC'. All of this construction layout with OC' horizontally equaling OC vertically, 
and with the thus-far-constructed layout's corner angles each being 90 degrees, 
makes it evident that the extensions of lines CA and C'B will intersect at 90 
degrees at point C", thus completing the square OC `C"C of edge length OC, 
which length is exactly 0.999483332 of the prime vector of the isotropic vector 
matrix's primitive cosmic- hierarchy system. 

 986.514  Since ACO, COC', and OC'B are all 90-degree angles, and since 
vertical CO = horizontal C'O in length, the area COC'C" must be a square. This 
means that two edges of each of three of the four triangular faces of the T Quanta 
Module tetrahedron, and six of its nine prefolded edges (it has only six edges after 
folding), are congruent with an exactly square paperboard blank. The three 
triangles OCA, OAB, and OBC' will be folded inwardly along AO and BO to 
bring the two CO and CO' edges together to produce the three systemically 
interior faces of the T Quanta Module. 

Fig. 986.515 

986.515  This construction method leaves a fourth right-triangular corner piece 
AC"B, which the dividers indicated-and subsequent trigonometry confirmed__to 
be the triangle exactly fitting the outer ABC-triangular-shaped open end of the 
folded-together T Quanta Module OABC. O" marks the fourth corner of the 
square blank, and trigonometry showed that C"A = C'B and C"B = AC, while AB 
of triangle OBA by construction is congruent with AB of triangle AC"B of the 
original layout. So it is proven that the vector- edged square COC'C" exactly 
equals the surface of the T Quanta Module tetrahedron CABO. (See Fig. 
986.515.) 



Fig. 986.515 T Quanta Module Foldable from Square: One of the triangular corners may 
be hinged and reoriented to close the open end of the folded tetrahedron. 
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 986.516  The triangle AC"B is hinged to the T Quanta Module along the mutual 
edge AB, which is the hypotenuse of the small AC"B right triangle. But as 
constructed the small right triangle AC"B cannot be hinged (folded) to close the T 
Quanta Module tetrahedron's open-end triangular area ABC__despite the fact that 
the hinged-on triangle AC"B and the open triangle ABC are dimensionally 
identical. AC"B is exactly the right shape and size and area and can be used to 
exactly close the outer face of the T Quanta Module tetrahedron, if__but only if__it 
is cut off along line BA and is then turned over so that its faces are reversed and 
its B corner is now where its A corner had been. This is to say that if the square 
COC'C" is made of a cardboard sheet with a red top side and a gray underside, 
when we complete the tetrahedron folding as previously described, cut off the 
small corner triangle AC"B along line BA, reverse its face and its acute ends, and 
then address it to the small triangular ABC open end of the tetrahedron CABO, it 
will fit exactly into place, but with the completed tetrahedron having three gray 
faces around vertex O and one red outer face CAB. (See Fig. 986.508C.) 

 986.517  Following this closure procedure, when the AC"B triangles of each of 
the squares are cut off from COC'C" along line AB, and right triangle AC"B is 
reversed in face and its right-angle corner C" is made congruent with the right-
angle corner C of the T Quanta Module's open-end triangle, then the B corner of 
the small triangle goes into congruence with the A corner of the open-end triangle, 
and the A corner of the small triangle goes into congruence with the B corner of 
the open-end triangle__with the 90- degree corner C becoming congruent with the 
small triangle's right-angle corner C". When all 120 of these T Quanta Module 
tetrahedra are closed and assembled to produce the triacontahedron, we will have 
all of the 360 gray faces inside and all of the 120 red faces outside, altogether 
producing an externally red and an internally gray rhombic triacontahedron. 



 986.518  In developing the paper-folding pattern with which to construct any one 
of these 120 identical T Quanta Module tetrahedra, we inadvertently discovered it 
to be foldable out of an exact square of construction paper, the edge of which 
square is almost (0.9995 of the prime vector 1) identical in length to that of the 
prime vector radius of synergetics' closest-packed unit-radius spheres, and of the 
isotropic vector matrix, and therefore of the radii and chords of the vector 
equilibrium__which synergetics' vector (as with all vectors) is the product of mass 
and velocity. While the unit-vector length of our everywhere-the-same energy 
condition conceptually idealizes cosmic equilibrium, as prime vector (Sec. 
540.10) it also inherently represents everywhere-the-same maximum cosmic 

velocity unfettered in vacuo__ergo, its linear velocity (symbolized in physics as 
lower-case c) is that of all radiation__whether beamed or piped or linearly 
focused__the velocity of whose unbeamed, omnidirectionally outward, surface 
growth rate always amounts to the second-powering of the linear speed. Ergo, 
omniradiance's wave surface growth rate is c2. 

 986.519  Since the edge length of the exactly 5.0000 (alpha) volumed T Quanta 
Module surface square is 0.9995 of the prime vector 1.0000 (alpha), the surface-
field energy of the T Quanta Module of minimum energy containment is 0.9995 
V2 , where 1.0000 (alpha) V is the prime vector of our isotropic vector matrix. 
The difference__0.0005__is minimal but not insignificant; for instance, the mass of 
the electron happens also to be 0.0005 of the mass of the proton. 

Next Section: 986.520 
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