
Fig. 987.230 

987.230  Symmetries #1 & 3; Cleavages #1 & 2 

 987.231  Of the seven equatorial symmetries first employed in the progression of 
self- fractionations or cleavages, we use the tetrahedron's six mid-edge poles to 
serve as the three axes of spinnability. These three great-circle spinnings delineate 
the succession of cleavages of the 12 edges of the tetra-contained octahedron 
whose six vertexes are congruent with the regular tetrahedron's six midedge polar 
spin points. The octahedron resulting from the first cleavage has 12 edges; they 
produce the additional external surface lines necessary to describe the two-
frequency, non-time-size subdividing of the primitive one-frequency tetrahedron. 
(See Sec. 526.23, which describes how four happenings' loci are required to 
produce and confirm a system discovery.) 

 987.232  The midpoints of the 12 edges of the octahedron formed by the first 
cleavage provide the 12 poles for the further great-circle spinning and Cleavage 
#2 of both the tetra and its contained octa by the six great circles of Symmetry #3. 
Cleavage #2 also locates the center-of-volume nucleus of the tetra and separates 
out the center-of-volume- surrounding 24 A Quanta Modules of the tetra and the 
48 B Quanta Modules of the two- frequency, tetra-contained octa. (See Sec. 942 
for orientations of the A and B Quanta Modules.) 

Fig. 987.240 

987.240  Symmetry #3 and Cleavage #3 

file:///C|/G/WWW/synergetics/s05/p2400.html#526.23
file:///C|/G/WWW/synergetics/s09/p3800.html#942.00


 



 

 

Fig. 987.240 Subdivision of Tetrahedral Unity: Symmetry #3: Subdivision of Internal 
Octahedron: 

A.  Bisection of tetrahedron face edges describes a congruent octahedron face. 
B.  The spinning of the internal octahedron on axes through the opposite mid-edges 

generates the six great circle system of Symmetry #3. 
C.  The six great circle fractionations subdivide the octahedron into 48 Asymmetric 

Tetrahedra; each such Asymmetric Tetrahedron is comprised of one A Quanta 
Module and one B quanta Module. 

D.  Exploded view of octahedron's 48 Asymmetric Tetrahedra. 

Copyright © 1997 Estate of R. Buckminster Fuller 



 

Fig 987.230 Subdivision of Tetrahedral Unity: Symmetry #3: 

A.  The large triangle is the tetrahedron face. The smaller inscribed triangle is formed 
by connecting the mid-points of the tetra edges and represents the octa face 
congruent with the plane of the tetra face. 

B.  Connecting the midpoints of the opposite pairs of the internal octahedron's 12 
edges provides the six axes of spin for the six great circle system of Symmetry #3. 
The perpendicular bisectors at A and B are projections resulting from the great 
circle spinning. B also shows an oblique view of the half- Tetra or "Chef's Caps" 
separated by the implied square. (For other views of Chef's Caps compare Figs. 
100.103 B and 527.08 A&B.) 

C.  The six great circle fractionations subdivide the tetrahedron into 24 A Quanta 
Modules. 

D.  Exploded view of the tetrahedron's 24 A Quanta Modules. 
E.  Further explosion of tetrahedron's A Quanta Modules. 
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Fig. 987.241 

987.241  Symmetry #3 and Cleavage #3 mutually employ the six-polar-paired, 
12 midedge points of the tetra-contained octa to produce the six sets of great-
circle spinnabilities that in turn combine to define the two (one positive, one 
negative) tetrahedra that are intersymmetrically arrayed with the common-nuclear-
vertexed location of their eight equi-interdistanced, outwardly and symmetrically 
interarrayed vertexes of the "cube"__the otherwise nonexistent, symmetric, square-
windowed hexahedron whose overall most economical intervertexial relationship 
lines are by themselves unstructurally (nontriangularly) stabilized. The positive 
and negative tetrahedra are internally trussed to form a stable eight-cornered 
structure superficially delineating a "cube" by the most economical and 
intersymmetrical interrelationships of the eight vertexes involved. (See Fig. 
987.240.) 

Fig. 987.242 

987.242  In this positive-negative superficial cube of tetravolume-3 there is 
combined an eight-faceted, asymmetric hourglass polyhedron of tetravolume-l½, 
which occurs interiorly of the interacting tetrahedra's edge lines, and a complex 
asymmetric doughnut cored hexahedron of tetravolume 1½, which surrounds the 
interior tetra's edge lines but occurs entirely inside and completely fills the space 
between the superficially described "cube" defined by the most economical 
interconnecting of the eight vertexes and the interior 1½-tetravolume hourglass 
core. (See Fig. 987.242E987.242E.) 

 987.243  An illustration of Symmetry #3 appears at Fig. 455.11A. 

 987.250  Other Symmetries 

 987.251  An example of Symmetry #4 appears at Fig. 450.10. An example of 
Symmetry #5 appears at Fig. 458.12B. An example of Symmetry #6 appears at 
Fig. 458.12A. An example of Symmetry #7 appears at Fig. 455.20. 

 987.300  Interactions of Symmetries: Spheric Domains 

 987.310  Irrationality of Nucleated and Nonnucleated Systems 

 987.311  The six great circles of Symmetry #3 interact with the three great circles 
of Symmetry # 1 to produce the 48 similar-surface triangles ADH and AIH at Fig. 
987.21ON. The 48 similar triangles (24 plus, 24 minus) are the surface-system set 
of the 48 similar asymmetric tetrahedra whose 48 central vertexes are congruent 
in the one__VE's__nuclear vertex's center of volume. 
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Fig. 987.241 Subdivision of Tetrahedral Unity: Octet: Duo-Tet Cube: Rhombic 
Dodecahedron: 

A.

Eighth-Octa composed of six asymmetric tetrahedra. Each asymmetric 
tetrahedron is composed of one A quanta Module and one B Quanta Module. 
The drawing is labeled to show the relationship of the A Modules and the B 
Modules. Vertex A is at the center of volume of the octahedron and F is at the 
surface of any of the octahedron's eight triangular faces. 

B.
Proximate assembly of Eighth-Octa and Quarter-Tetra to be face bonded 
together as Octet. 

C.

Octet: (Oc-Tet = octahedron + tetrahedron.) An Eighth-Octa is face bonded 
with a Quarter-Tetra to produce the Octet. (See Sec. 986.430.) The Octet is 
composed of 12 A Quanta Modules and 6 B Quanta Modules. (Compare color 
plate 22.) 

D, E.
Duo-Tet Cube: Alternate assemblies of eight Octets from Duo-Tet Cube. Each 
Duo-Tet Cube = 3- tetravolumes. 

F.
Rhombic Dodecahedron: Two Duo-Tet Cubes disassociate their Octet 
components to be reassembled into the Rhombic Dodecahedron. Rhombic 
Dodecahedron = 6-tetravolumes. 
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Fig. 987.242 Evolution of Duo-Tet Cube and Hourglass Polyhedron: 

A.  One positive regular tetrahedron and one negative regular tetrahedron are 
intersymmetrically arrayed within the common nuclear-vertexed location. Their 
internal trussing permits their equi-inter- distanced vertexes to define a stable 
eight-cornered structure, a "cube." The cube is tetravolume-3; as shown here we 
observe 1 l/2-tetravolumes of "substance" within the eight vertexes and 1 1/2- 
tetravolumes of complementation domain within the eight vertexes . The overall 
cubic domain consists of three tetravolumes: one outside-out (1 1/2) and one 
inside-out (1 1/2). The same star polyhedron appears within a vector equilibrium 
net at Fig. 1006.32. 

B.  Octahedron: tetravolume-4 
C.  Icosahedron; tetravolume- 18.51229586 
D.  Vector equilibrium: tetravolume-20 
E.  Eight-faceted asymmetric Hourglass Polyhedron: tetravolume-l l/2. These 

complex asymmetric doughnut-cored hexahedra appear within the star 
polyhedron at A. 
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Fig. 987.312 

987.312  These 48 asymmetric tetrahedra combine themselves into 12 sets of 
four asymmetric tetra each. These 12 sets of four similar (two positive, two 
negative) asymmetric tetrahedra combine to define the 12 diamond facets of the 
rhombic dodecahedron of tetravolume-6. This rhombic dodecahedron's 
hierarchical significance is elsewhere identified as the allspace-filling domain of 
each closest-packed, unit-radius sphere in all isotropic, closest-packed, unit-radius 
sphere aggregates, as the rhombic dodecahedron's domain embraces both the unit-
radius sphere and that sphere's rationally and exactly equal share of the 
intervening intersphere space. 

 987.313  The four great circles of Symmetry #2 produce a minimum nucleated 
system of 12 unit-radius spheres closest packed tangentially around each nuclear 
unit-radius sphere; they also produce a polyhedral system of six square windows 
and eight triangular windows; they also produce four hexagonal planes of 
symmetry that all pass through the same nuclear vertex sphere's exact center. 

 987.314  These four interhexagonalling planes may also be seen as the 
tetrahedron of zero-time-size-volume because all of the latter's equi-edge lengths, 
its face areas, and system volumes are concurrently at zero. 

 987.315  This four-great-circle interaction in turn defines the 24 equilengthed 
vectorial radii and 24 equi-lengthed vector chords of the VE. The 24 radii are 
grouped, by construction, in two congruent sets, thereby to appear as only 12 
radii. Because the 24 radial vectors exactly equal energetically the 
circumferentially closed system of 24 vectorial chords, we give this system the 
name vector equilibrium. Its most unstable, only transitional, equilibrious state 
serves nature's cosmic, ceaseless, 100-percent-energy- efficient, self-regenerative 
integrity by providing the most expansive state of intertransformation 
accommodation of the original hierarchy of primitive, pre-time-size, "click-stop" 
rational states of energy-involvement accountabilities. Here we have in the VE 
the eight possible phases of the initial positive-negative tetrahedron occurring as 
an inter-double-bonded (edge-bonded), vertex-paired, self-inter-coupling nuclear 
system. 

 987.316  With the nucleated set of 12 equi-radius vertexial spheres all closest 
packed around one nuclear unit-radius sphere, we found we had eight tetrahedra 
and six Half- octahedra defined by this VE assembly, the total volume of which is 
20. But all of the six Half-octahedra are completely unstable as the 12 spheres 
cornering their six square windows try to contract to produce six diamonds or 12 
equiangular triangles to ensure their interpatterning stability. (See Fig. 987.240.) 



Fig. 987.312 Rhombic Dodecahedron: 

A.  The 25 great circle system of the vector equilibrium with the four great circles 
shown in dotted lines. (Compare Fig. 454.06D, third printing.) 

B.  Spherical rhombic dodecahedron great circle system generated from six-great-
circle system of vector equilibrium, in which the two systems are partially 
congruent. The 12 rhombuses of the spherical rhombic dodecahedron are shown 
in heavy outline. In the interrelationship between the spherical and planar 
rhombic dodecahedron it is seen that the planar rhombus comes into contact with 
the sphere at the mid-face point. 
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 987.317  If we eliminate the nuclear sphere, the mass interattraction of the 12 
surrounding spheres immediately transforms their superficial interpatterning into 
20 equiangular triangles, and this altogether produces the self-structuring pattern 
stability of the 12 symmetrically interarrayed, but non-spherically-nucleated 
icosahedron. 

 987.318  When this denucleation happens, the long diagonals of the six squares 
contract to unit-vector-radius length. The squares that were enclosed on all four 
sides by unit vectors were squares whose edges__being exactly unity__had a 
diagonal hypotenuse whose length was the second root of two__ergo, when VE is 
transformed to the icosahedron by the removal of the nuclear sphere, six of its 
sqrt(2)-lengthed, interattractive-relationship lines transform into a length of 1, 
while the other 24 lines of circumferential interattraction remain constant at unit-
vector-radius length. The difference between the second root of two (which is 
1.414214 - 1, i.e., the difference is 0.414214) occurs six times, which amounts to 
a total system contraction of 2.485284. This in turn means that the original 

24 + 8.485284 = 32.485284 
overall unit-vector-lengths of containing bonds of the VE are each reduced by a 
length of 2.485284 to an overall of exactly 30 unit-vector-radius lengths. 

 987.319  This 2.485284 a excess of gravitational tensional-embracement 
capability constitutes the excess of intertransformative stretchability between the 
VE's two alternatively unstable, omnisystem's stable states and its first two 
similarly stable, omnitriangulated states. 

 987.320  Because the increment of instability tolerance of most comprehensive 
intertransformative events of the primitive hierarchy is an irrational increment, the 
nucleus- void icosahedron as a structural system is inherently incommensurable 
with the nucleated VE and its family of interrational values of the octahedral, 
tetrahedral, and rhombic dodecahedral states. 

 987.321  The irrational differences existing between nucleated and nonnucleated 
systems are probably the difference between proton-nucleated and proton-neutron 
systems and nonnucleated-nonneutroned electron systems, both having identical 
numbers of external closest-packed spheres, but having also different overall, 
system-domain, volumetric, and system-population involvements. 



 987.322  There is another important systemic difference between VE's proton-
neutron system and the nonnucleated icosahedron's electron system: the 
icosahedron is arrived at by removing the nucleus, wherefore its contraction will 
not permit the multilayering of spheres as is permitted in the multilayerability of 
the VE__ergo, it cannot have neutron populating as in the VE; ergo, it permits 
only single-layer, circumferential closest packings; ergo, it permits only single 
spherical orbiting domains of equal number to the outer layers of VE-nucleated, 
closest-packed systems; ergo, it permits only the behavioral patterns of the 
electrons. 

 987.323  When all the foregoing is comprehended, it is realized that the whole 
concept of multiplication of information by division also embraces the concept of 
removing or separating out the nucleus sphere (vertex) from the VE's structurally 
unstable state and, as the jitterbug model shows, arriving omnisymmetrically 
throughout the transition at the structural stability of the icosahedron. The 
icosahedron experimentally evidences its further self-fractionation by its three 
different polar great-circle hemispherical cleavages that consistently follow the 
process of progressive self-fractionations as spin- halved successively around 
respective #5, #6, and #7 axes of symmetry. These successive halvings develop 
various fractions corresponding in arithmetical differentiation degrees, as is 
shown in this exploratory accounting of the hierarchy of unit-vector delineating 
multiplication of information only by progressive subdividing of parts. 

 987.324  When the tetrahedron is unity of tetravolume-1 (see Table 223.64), then 
(in contradistinction to the vector-radiused VE of tetravolume-20) 
__ the vector-diametered VE = + 2½ or = - 2½ 
__ a rational, relative primitive prime number S tetravolume is also only 

realizable with half of its behavioral potentials in the presently-tune-in-able 
macrocosm and the other half of its total 5 behavioral potential existent in the 
presently-tune-out-able microcosm; thus, 

__ an overall +5 tetravolume potential -2½__ergo, +5 - 2½ = +2½ 

or
__ an overall -5 tetravolume potential +2½ __ergo, - 5+2½ = - 2½ 
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 987.325  The positive and negative tetrahedra, when composited as 
symmetrically concentric and structurally stable, have eight symmetrically 
interarranged vertexes defining the corners of what in the past has been 
mistakenly identified as a primitive polyhedron, popularly and academically 
called the "cube" or hexahedron. Cubes do not exist primitively because they are 
structurally unstable, having no triangularly-self-stabilizing system pattern. They 
occur frequently in nature's crystals but only as the superficial aspect of a 
conglomerate complex of omnitriangulated polyhedra. 

Fig. 987.326 

987.326  This positive-negative tetrahedron complex defines a hexahedron of 
overall volume-3__1½ inside and 1½ outside its intertrussed system's inside-and-
outside-vertex-defined domain. 
__ The three-great-circle symmetrical cleavaging (#I) of the primitive 

tetrahedron produces the vector-edged octahedron of tetravolume-4.
__ The vector-radiused rhombic triacontahedron, with its .9994833324 unit-

vector- radius perpendicular to its midface center produces a symmetrical 
polyhedron of tetravolume-5.

__ With its 12 diamond-face-centers occurring at unit-vector-radius, the rhombic 
dodecahedron has a tetravolume-6.

The rhombic dodecahedron exactly occupies the geometric domain of each unit-
vector- radius sphere and that sphere's external share of the symmetrically 
identical spaces intervening between closest-packed unit-radius spheres of any 
and all aggregates of unit- radius, closest-interpacked spheres. In this closest-
packed condition each sphere within the aggregate always has 12 spheres 
symmetrically closest packed tangentially around it. The midpoints of the 12 
diamond faces of the rhombic dodecahedron's 12 faces are congruent with the 
points of tangency of the 12 surrounding spheres. All the foregoing explains why 
unit-radius rhombic dodecahedra fill allspace when joined together. 

 987.327  Repeating the foregoing more economically we may say that in this 
hierarchy of omnisymmetric primitive polyhedra ranging from I through 2, 2 , 3, 
4, 5, and 6 tetravolumes, the rhombic dodecahedron's 12 diamond-face-midpoints 
occur at the points of intertangency of the 12 surrounding spheres. It is thus 
disclosed that the rhombic dodecahedron is not only the symmetric domain of 
both the sphere itself and the sphere's symmetric share of the space intervening 
between all closest-packed spheres and therefore also of the nuclear domains of 
all isotropic vector matrixes (Sec. 420), but the rhombic dodecahedron is also the 
maximum-limit-volumed primitive polyhedron of frequency-l. 
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Fig. 987.326 Stellated Rhombic Dodecahedron: 

A.  Rhombic dodecahedron with diamond faces subdivided into quadrants to describe 
mid-face centers. Interior lines with arrows show unit radii from system center to 
mid-face centers. This is the initial rhombic dodeca of tetravolume-6. 

B.  The rhombic dodecahedron system is "pumped out" with radii doubled from unit 
radius to radius = 2, or twice prime vector radius . This produces the stellated 
rhombic dodecahedron of tetravolume- 12. 

C.  The stellated rhombic dodecahedron vertexes are congruent with the mid-edge 
points of the cube of tetravolume-24. A composite of three two-frequency 
Couplers (each individually of tetravolume-8) altogether comprises a star complex 
of tetravolume-12, sharing a common central rhombic dodeca domain of 
tetravolume-6. The stellated rhombic dodeca of tetravolume-12 is half the volume 
of the 24-tetravolume cube that inscribes it. (Compare the Duo-Tet Cube at Fig. 
987.242A.) 
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Next Section: 987.400 
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