
 987.400  Interactions of Symmetries: Secondary Great-circle Sets 

 987.410  Icosa Phase of Rationality 

 987.411  The 96 secondary great circles of the VE divide the chorded edge of the 
VE (which is the unit vector radius of synergetics) into rational linear fractions of 
the edge length__i.e., 1/2, 3/10, 1/4, 1/6, 1/10__and these fractions embrace all the 
intercombinings of the first four prime numbers 1, 2, 3, and 5. 

Fig. 987.412 

987.412  For an illustration of how the four VE great circles of 60-degree central 
angles subdivide the central-angle chord increments, see Fig. 987.412. 

 987.413  Next recalling the jitterbug transformation of the VE into the icosa with 
its inherent incommensurability brought about by the 2:sqrt(2) = sqrt(2):1 
transformation ratio, and recognizing that the transformation was experimentally 
demonstrable by the constantly symmetrical contracting jitterbugging, we proceed 
to fractionate the icosahedron by the successive l5 great circles, six great circles 
(icosa type), and 10 great circles whose self-fractionation produces the S 
Modules8 as well as the T and E Modules. 

(Footnote 8: See Sec. 988.) 

 987.414  But it must be recalled that the experimentally demonstrable jitterbug 
model of transformation from VE to icosa can be accomplished through either a 
clockwise or counterclockwise twisting, which brings about 30 similar but 
positive and 30 negative omniintertriangulated vector edge results. 

 987.415  The midpoints of each of these two sets of 30 vertexes in turn provide 
the two alternate sets of 30 poles for the spin-halving of the 15 great circles of 
Symmetry #6, whose spinning in turn generates the 120 right spherical triangles 
(60 positive, 60 negative) of the icosahedral system. 



Fig. 987.412 Rational Fraction Edge Increments of 60-degree Great-circle Subdividings 
of Vector Equilibrium: When these secondary VE great-circle sets are projected upon the 
planar VE they reveal the following rational fraction edge increments: 

D' - D = 1 VE edge D' - D = 1 VE radius

(B - 31) / (D' - D) = 1/10 (B - D) / (D' - D) = 1/2

(B - 73) / (D' - D) = 3/8 (B - C) / (D' - D) = 1/6

(B - E) / (D' - D) = 1/6 (B - H) / (D' - D) = 1/2

(B - 32) / (D' - D) = 1/4 (B - 62) / (D' - D) = 1/4

(B - 33) / (D' - D) = 3/10 (B - 67) / (D' - D) = 3/10
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 987.416  The 120 right triangles, evenly grouped into 30 spherical diamonds, are 
transformed into 30 planar diamonds of central angles identical to those of the 30 
spherical diamonds of the 15 great circles of the icosa. When the radius to the 
center of the face of the rhombic triacontahedron equals 0.9994833324.... of the 
unit vector radius of Synergetics (1.000), the rhombic triacontahedron has a 
tetravolume of 5 and each of its 120 T Quanta Modules has a volume of one A 
Module. When the radius equals 1, the volume of the rhombic triacontahedron is 
slightly larger (5.007758029), and the corresponding E Module has a volume of 
1.001551606 of the A Module. (See Sec. 986.540) 

988.00  Icosahedron and Octahedron: S Quanta Module 

 988.100  Octa-icosa Matrix 

Fig. 988.00 

Fig. 988.100 

988.110  The icosahedron positioned in the octahedron describes the S Quanta 
Modules. (See Fig. 988.100.) Other references to the S Quanta Modules may be 
found at Secs. 100.105, 100.322, Table 987.121, and 987.413. 

 988.111  As skewed off the octa-icosa matrix, they are the volumetric 
counterpart of the A and B Quanta Modules as manifest in the nonnucleated 
icosahedron. They also correspond to the 1/120th tetrahedron of which the 
triacontahedron is composed. For their foldable angles and edge-length ratios see 
Figs. 988.111A-B. 
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Fig. 988.00 Polyhedral Evolution: S Quanta Module: Comparisons of skew polyhedra. 
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Fig. 988.100 Octa-Icosa Matrix: Emergence of S Quanta Module: 

A.  Vector equilibrium inscribed in four-frequency tetrahedral grid. 
B.  Octahedron inscribed in four-frequency tetrahedral grid. 
C.  Partial removal of grid reveals icosahedron inscribed within octahedron. 
D.  Further subdivision defines modular spaces between octahedron and icosahedron. 
E.  Exploded view of six pairs of asymmetric tetrahedra that make up the space 

intervening between octa and icosa. Each pair is further subdivided into 24 S 
Quanta Modules. Twenty-four S Quanta Modules are added to the icosahedron to 
produce the octahedron. 
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Fig. 988.12 

988.12  The icosahedron inscribed within the octahedron is shown at Fig. 
988.12. 

Fig. 988.13A 

Fig. 988.13B 

Fig. 988.13C 

988.13  The edge lengths of the S Quanta Module are shown at Fig. 988.13A. 

 988.14  The angles and foldability of the S Quanta Module are shown at Fig. 
988.13B. 

 988.20  Table: Volume-area Ratios of Modules and Polyhedra of the 
Primitive Hierarchy: 

Volume Area Volume/Area Area/Volume

A Module 1* 1*

T " 1 1.0032 0.9968 1.0032

E " 1.0016 1.0042 0.9974 1.0026

S " 1.0820 1.0480 1.0325 0.9685

B " 1 1.2122 0.8249 1.2122



Fig. 988.12 Icosahedron Inscribed Within Octahedron: The four-frequency tetrahedron 
inscribes an internal octahedron within which may be inscribed a skew icosahedron. Of 
the icosahedron's 20 equiangular triangle faces, four are congruent with the plane of the 
tetra's faces (and with four external faces of the inscribed octahedron). Four of the 
icosahedron's other faces are congruent with the remaining four internal faces of the 
icosahedron. Two-fifths of the icosa faces are congruent with the octa faces. It requires 
24 S Quanta Modules to fill in the void between the octa and the icosa. 
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Fig. 988.13A S Quanta Module Edge Lengths: This plane net for the S Quanta Module 
shows the edge lengths ratioed to the unit octa edge (octa edge = tetra edge.) 
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Fig. 988.13B S Quanta Module Angles: This plane net shows the angles and foldability 
of the S Quanta Module. 
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Fig. 988.13C S Quanta Module in Context of Icosahedron and Octahedron 
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Tetrahedron 24 6.9576 3.4495 0.2899

Icosahedron ** 70.0311 10.5129 6.6615 0.1501

Cube 72 12.0508 5.9747 0.1674

Octahedron 96 13.9151 6.8990 0.1449

Rhombic 
dodecahedron

144 17.6501 8.1586 0.1226

Icosahedron 444.2951 36.0281 12.3319 0.0811

* Volume and area of A Module considered as unity. 
** Icosahedron inside octahedron. 

990.00  Triangular and Tetrahedral Accounting 

Fig. 990.01 

990.01  All scientists as yet say "X squared," when they encounter the expression 
"X2," and "X cubed," when they encounter "X3" But the number of squares 
enclosed by equimodule-edged subdivisions of large gridded squares is the same 
as the number of triangles enclosed by equimodule-edged subdivisions of large 
gridded triangles. This remains true regardless of the grid frequency, except that 
the triangular grids take up less space. Thus we may say "triangling" instead of 
"squaring" and arrive at identical arithmetic results, but with more economical 
geometrical and spatial results. (See Illus. 990.01 and also 415.23.) 

 990.02  Corresponding large, symmetrical agglomerations of cubes or tetrahedra 
of equimodular subdivisions of their edges or faces demonstrate the same rate of 
third-power progression in their symmetrical growth (1, 8, 27, 64, etc.). This is 
also true when divided into small tetrahedral components for each large 
tetrahedron or in terms of small cubical components of each large cube. So we 
may also say "tetrahedroning" instead of "cubing" with the same arithmetical but 
more economical geometrical and spatial results. 

file:///C|/G/WWW/synergetics/s04/p1520.html#415.23


Fig. 990.01. 
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 990.03  We may now say "one to the second power equals one," and identify that 
arithmetic with the triangle as the geometrical unit. Two to the second power 
equals four: four triangles. And nine triangles and 16 triangles, and so forth. 
Nature needs only triangles to identify arithmetical "powering" for the self-
multiplication of numbers. Every square consists of two triangles. Therefore, 
"triangling" is twice as efficient as "squaring." This is what nature does because 
the triangle is the only structure. If we wish to learn how nature always operates in 
the most economical ways, we must give up "squaring" and learn to say 
"triangling," or use the more generalized "powering." 

 990.04  There is another very trustworthy characteristic of synergetic accounting. 
If we prospectively look at any quadrilateral figure that does not have equal edges, 
and if we bisect and interconnect those mid-edges, we always produce four 
dissimilar quadrangles. But when we bisect and interconnect the mid-edges of any 
arbitrary triangle__equilateral, isosceles, or scalene__four smaller similar and 
equisized triangles will always result. There is no way we can either bisect or 
uniformly subdivide and then interconnect all the edge division points of any 
symmetrical or asymmetrical triangle and not come out with omni- identical 
triangular subdivisions. There is no way we can uniformly subdivide and 
interconnect the edge division points of any asymmetrical quadrangle (or any 
other different-edge-length polygons) and produce omnisimilar polygonal 
subdivisions. Triangling is not only more economical; it is always reliable. These 
characteristics are not available in quadrangular or orthogonal accounting. 

 990.05  The increasingly vast, comprehensive, and rational order of arithmetical, 
geometrical, and vectorial coordination that we recognize as synergetics can 
reduce the dichotomy, the chasm between the sciences and the humanities, which 
occurred in the mid-nineteenth century when science gave up models because the 
generalized case of exclusively three-dimensional models did not seem to 
accommodate the scientists' energy- experiment discoveries. Now we suddenly 
find elegant field modelability and conceptuality returning. We have learned that 
all local systems are conceptual. Because science had a fixation on the "square," 
the "cube," and the 90-degree angle as the exclusive forms of "unity," most of its 
constants are irrational. This is only because they entered nature's structural 
system by the wrong portal. If we use the cube as volumetric unity, the 
tetrahedron and octahedron have irrational number volumes. 

995.00  Vector Models of Magic Numbers 



 995.01  Magic Numbers 

 995.02  The magic numbers are the high abundance points in the atomic-isotope 
occurrences. They are 2, 8, 20, 50, 82, 126, ..., ! For every nonpolar vertex, there 
are three vector edges in every triangulated structural system. The Magic 
Numbers are the nonpolar vertexes. (See Illus. 995.31.) 

Fig. 995.03 

Fig. 995.03A 

995.03  In the structure of atomic nuclei, the Magic Numbers of neutrons and 
protons correspond to the states of increased stability. Synergetics provides a 
symmetrical, vector-model system to account for the Magic Numbers based on 
combinations of the three omnitriangulated structures: tetrahedron, octahedron, 
and icosahedron. In this model system, all the vectors have the value of one-third. 
The Magic Numbers of the atomic nuclei are accounted for by summing up the 
total number of external and internal vectors in each set of successive frequency 
models, then dividing the total by three, there being three vectors in Universe for 
every nonpolar vertex. 

 995.10  Sequence 

 995.11A  The sequence is as follows: 

One-frequency tetrahedron: (Magic Numbers)

6 vectors times 1/3 = 2

Two-frequency tetrahedron:

24 vectors times 1/3 = 8

Three-frequency tetrahedron:

60 vectors times 1/3 = 20

Three frequency tetrahedron + two-frequency 
tetrahedron:



Fig. 995.03 Vector Models of Atomic Nuclei: Magic Numbers: In the structure of 
atomic nuclei there are certain numbers of neutrons and protons which correspond to 
states of increased stability. These numbers are known as the magic numbers and have 
the following values: 2, 8, 20, 50, 82, and 126. A vector model is proposed to account 
for these numbers based on combinations of the three fundamental omnitriangulated 
structures: the tetrahedron, octahedron, and icosahedron. In this system all vectors have 
a value of one-third. The magic numbers are accounted for by summing the total number 
of vectors in each set and multiplying the total by 1/3. Note that although the tetrahedra 
are shown as opaque, nevertheless all the internal vectors defined by the isotropic vector 
matrix are counted in addition to the vectors visible on the faces of the tetrahedra. 
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Fig. 995.03A Vector Models of Atomic Nuclei: Magic Numbers: In the structure of 
atomic nuclei there are certain numbers of neutrons and protons which correspond to 
states of increased stability. These numbers are known as the magic numbers and have 
the following values: 2, 8, 20, 28, 50, 82, and 126. A vector model is proposed to 
account for these numbers based on combinations of the three fundamental 
omnitriangulated structures: the tetrahedron, octahedron, and icosahedron. In this system 
all vectors have a have of one-third. The magic numbers are accounted for by summing 
the total number of vectors in each set and multiplying the total by 1/3. Note that 
although the tetrahedra are shown as opaque, nevertheless all the internal vectors 
defined by the isotropic vector matrix are counted in addition to the vectors visible on 
all faces of the tetrahedra. 
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60 vectors + 24 vectors times 1/3 = 28

Four-frequency tetrahedron + one-frequency 
icosahedron:

120 vectors + 30 vectors times 1/3 = 50

Five-frequency tetrahedron + one-frequency tetrahedron 
+ one-frequency icosahedron:

210 + 6 + 30 vectors times 1/3 = 82

Six-frequency tetrahedron + one-frequency octahedron 
+ one-frequency icosahedron:

336 + 12 + 30 vectors times 1/3 = 126

 995.11  The sequence is as follows: 

One-frequency tetrahedron: (Magic Number:)

6 vectors times 1/3 = 2 

Two-frequency tetrahedron: 

24 vectors times 1/3 = 8 

Three-frequency tetrahedron: 

60 vectors times 1/3 = 20 

Four-frequency tetrahedron + One-frequency icosahedron: 

120 vectors + 30 vectors times 1/3 = 50

Five-frequency tetrahedron + One-frequency icosahedron: 

216 + 30 vectors times 1/3 = 82 

Six-frequency tetrahedron + One-frequency octahedron + One-
frequency icosahedron: 

336 + 12 + 30 vectors times 1/3 = 126



 995.12  Magic Number 28: The Magic Number 28, which introduces the cube 
and the octahedron to the series, was inadvertently omitted from Synergetics 1. 
The three- frequency tetrahedron is surrounded by an enlarged two-frequency 
tetrahedron that shows as an outside frame. This is a negative tetrahedron shown 
in its halo aspect because it is the last case to have no nucleus. The positive and 
negative tetrahedra combine to provide the eight corner points for the triangulated 
cube. The outside frame also provides for an octahedron in the middle. (See 
revised Figs. 995.03A and 995.31A.) 

 995.20  Counting 

 995.21  In the illustration, the tetrahedra are shown as opaque. Nevertheless, all 
the internal vectors defined by the isotropic vector matrix are counted in addition 
to the vectors visible on the external faces of the tetrahedra. 

 995.30  Reverse Peaks in Descending Isotope Curve 

Fig. 995.31 

Fig. 995.31A 

995.31  There emerges an impressive pattern of regularly positioned behaviors of 
the relative abundances of isotopes of all the known atoms of the known 
Universe. Looking like a picture of a mountainside ski run in which there are a 
series of ski-jump upturns of the run, there is a series of sharp upward-pointing 
peaks in the overall descent of this relative abundance of isotopes curve, which 
originates at its highest abundance in the lowest-atomic-numbered elemental 
isotopes. 

 995.32  The Magic Number peaks are approximately congruent with the atoms of 
highest structural stability. Since the lowest order of number of isotopes are the 
most abundant, the inventory reveals a reverse peak in the otherwise descending 
curve of relative abundance. 

 995.33  The vectorial modeling of synergetics demonstrates nuclear physics with 
lucid comprehension and insight into what had been heretofore only 
instrumentally apprehended phenomena. In the post-fission decades of the atomic-
nucleus explorations, with the giant atom smashers and the ever more powerful 
instrumental differentiation and quantation of stellar physics by astrophysicists, 
the confirming evidence accumulates. 



Fig. 995.31 
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Fig. 995.31A Reverse Peaks in Descending Isotope Curve: Magic Numbers 
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 995.34  Dr. Linus Pauling has found and published his spheroid clusters designed 
to accommodate the Magic Number series in a logical system. We find 
him__although without powerful synergetic tools__in the vicinity of the answer. 
But we can now identify these numbers in an absolute synergetic hierarchy, which 
must transcend any derogatory suggestion of pure coincidence alone, for the 
coincidence occurs with mathematical regularity, symmetry, and a structural logic 
that identifies it elegantly as the model for the Magic Numbers. 

Next Chapter: 1000.00 
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