Polyhedra Coordinates
In a note posted on "synergetics-l@teleport.com", Gerald de Jong
showed that the vertices of the Tetrahedron, Octahedron, A quantum
module, B quantum module, and Vector Equilibrium could all be given
integer (x, y, z) coordinates. He also showed that the Icosahedron
and Regular Dodecahedron vertex could be given in terms of integers
and the number p=(1 + sqrt(5)) /2, the Golden ratio.
Following de Jong's lead, I
re-calculated all the vertex coordinates for all the major polyhedra
in Fuller's Synergetics books and found that almost all the polyhedra
could be given integer vertex coordinates or coordinates in terms of
the number p. These results are given as part of the polyhedra data.
The original vertex coordinates to these polyhedra which I calculated back in
1992, which were almost all irrational numbers, can thankfully be forgotten.
The scale for the vertex coordinates listed
was pick to ensure that all the rational coordinates would in fact
be integer coordinates. This means that the edge length of the cube
is 6 coordinate units in length, not one. (The edge length of the inscribed
tetrahedron can be defined as unit length, but the coordinate scale does
not give the edge length a value of one.)
The vertex coordinates give the orientation of the polyhdera
as they occur in the IVM. Note that there are other orientations
of the polyhedra in the IVM. I have listed only one such orientation.
For the corrdinates listed, most of the polyhedra center of volume are not at (0,0,0).
Therefore, if you intend to use these
coordinates as part of a computer program which rotates the
polyhedra you will need to translate the polyhedra first so that the
center of volume is at (0,0,0).
Integer Coordinates
Tetrahedron
| VERTEX | X | Y | Z |
| A | 0 | 0 | 0 |
| B | 0 | 6 | 6 |
| C | 6 | 0 | 6 |
| D | 6 | 6 | 0 |
1/4 Tetrahedron
| VERTEX | X | Y | Z |
| A | 0 | 0 | 0 |
| B | 6 | 0 | 6 |
| C | 6 | 6 | 0 |
| D | 3 | 3 | 3 |
A+ Quantum Module
| VERTEX | X | Y | Z |
| A | 0 | 0 | 0 |
| B | 3 | 3 | 0 |
| C | 4 | 2 | 2 |
| D | 3 | 3 | 3 |
A- Quantum Module
| VERTEX | X | Y | Z |
| A | 6 | 6 | 6 |
| B | 3 | 3 | 0 |
| C | 4 | 2 | 2 |
| D | 3 | 3 | 3 |
Octahedron
| VERTEX | X | Y | Z |
| A | 0 | 0 | 0 |
| B | 6 | -6 | 0 |
| C | 12 | 0 | 0 |
| D | 6 | 6 | 0 |
| E | 6 | 0 | 6 |
| F | 6 | 0 | -6 |
Octahedron edge map: (A,B)(A,D)(A,E)(A,F)(B,C)(B,E)(B,F)(C,D)
(C,E)(C,F)(D,E)(D,F)
1/8 Octahedron
| VERTEX | X | Y | Z |
| A | 0 | 0 | 0 |
| B | 6 | 0 | 6 |
| C | 6 | 0 | 0 |
| D | 6 | 6 | 0 |
Iceberg
| VERTEX | X | Y | Z |
| A | 0 | 0 | 0 |
| B | 12 | 0 | 0 |
| C | 6 | 6 | 0 |
| D | 6 | 0 | 6 |
B+ Quantum Module
| VERTEX | X | Y | Z |
| A | 0 | 0 | 0 |
| B | 6 | 0 | 0 |
| C | 6 | 0 | 3 |
| D | 3 | 3 | 0 |
B- Quantum Module
| VERTEX | X | Y | Z |
| A | 6 | 6 | 0 |
| B | 6 | 0 | 0 |
| C | 6 | 0 | 3 |
| D | 3 | 3 | 0 |
C Quantum Module
| VERTEX | X | Y | Z |
| A | 0 | 0 | 0 |
| B | 3 | 3 | 0 |
| C | 2 | 4 | 4 |
| D | 1 | 5 | 5 |
D Quantum Module
| VERTEX | X | Y | Z |
| A | 0 | 0 | 0 |
| B | 3 | 3 | 0 |
| C | 1 | 5 | 5 |
| D | 0 | 6 | 6 |
nth Quantum Module
(n integer)
VERTEX | X | Y | Z |
| A | 0 | 0 | 0 |
| B | 3 | 3 | 0 |
| Cn | 4-n | 2+n | 2+n |
| Dn | 3-n | 3+n | 3+n |
MITE
| VERTEX | X | Y | Z |
| A | 0 | 0 | 0 |
| B | 3 | 3 | 0 |
| C | 6 | 0 | 0 |
| D | 3 | 3 | 3 |
Syte: Bite
| VERTEX | X | Y | Z |
| A | 0 | 0 | 0 |
| B | 6 | 0 | 0 |
| C | 0 | 6 | 0 |
| D | 3 | 3 | 3 |
Syte: Rite
| VERTEX | X | Y | Z |
| A | 0 | 0 | 0 |
| B | 6 | 0 | 0 |
| C | 3 | 3 | 3 |
| D | 3 | 3 | -3 |
Syte: Lite
| VERTEX | X | Y | Z |
| A | 0 | 0 | 0 |
| B | 3 | 3 | 0 |
| C | 6 | 0 | 0 |
| D | 3 | 3 | 3 |
| E | 3 | 0 | 3 |
Syte: Lite edge map: (A,B)(A,C)(A,E)(A,D)(B,C)(B,D)(C,D)(C,E)(D,E)
Kite: Kate
| VERTEX | X | Y | Z |
| A | 0 | 0 | 0 |
| B | 6 | 0 | 0 |
| C | 0 | 6 | 0 |
| D | 3 | 3 | 3 |
| E | 3 | 3 | -3 |
Kite: Kate edge map: (A,B)(A,C)(A,D)(A,E)(B,D)(B,E)(C,D)(C,E)(D,E)
Kite: Kat
| VERTEX | X | Y | Z |
| A | 0 | 0 | 0 |
| B | 6 | 0 | 0 |
| C | 0 | 6 | 0 |
| D | 6 | 6 | 0 |
| E | 3 | 3 | 3 |
Kite: Kat edge map: (A,B)(B,C)(C,D)(D,A)(A,E)(B,E)(C,E)(D,E)
Octet
| VERTEX | X | Y | Z |
| A | 0 | 0 | 0 |
| B | 6 | 0 | 0 |
| C | 6 | 6 | 0 |
| D | 6 | 0 | 6 |
| E | 3 | 3 | 3 |
Octet edge map: (A,B)(A,C)(A,D)(A,E)(B,C)(B,D)(C,D)(C,E)(D,E)
Coupler
| VERTEX | X | Y | Z |
| A | 0 | 0 | 0 |
| B | 6 | 0 | 0 |
| C | 0 | 6 | 0 |
| D | 3 | 3 | 3 |
| E | 6 | 6 | 6 |
| F | 3 | 3 | -3 |
Coupler edge map: (A,B)(A,C)(A,D)(A,F)(B,D)(B,E)(B,F)
(C,D)(C,E)(C,F)(D,E)(E,F)
Cube
| VERTEX | X | Y | Z |
| A | 0 | 0 | 0 |
| B | 6 | 0 | 0 |
| C | 6 | 6 | 0 |
| D | 0 | 6 | 0 |
| E | 0 | 0 | 6 |
| F | 6 | 0 | 6 |
| G | 6 | 6 | 6 |
| H | 0 | 6 | 6 |
edge map: (A,B)(A,D)(A,E)(B,C)(B,F)(C,D)(C,G)
(D,H)(E,F)(E,H)(F,G)(G,H)
Vector Equilibrium
| VERTEX | X | Y | Z |
| V1 | 6 | 0 | 6 |
| V2 | 0 | 6 | 6 |
| V3 | -6 | 0 | 6 |
| V4 | 0 | -6 | 6 |
| V5 | 6 | 6 | 0 |
| V6 | -6 | 6 | 0 |
| V7 | -6 | -6 | 0 |
| V8 | 6 | -6 | 0 |
| V9 | 6 | 0 | -6 |
| V10 | 0 | 6 | -6 |
| V11 | -6 | 0 | -6 |
| V12 | 0 | -6 | -6 |
Vector Equilibrium edge map: (V1,V2)(V1,V4)(V1,V5)(V1,V8)(V2,V3)(V2,V5)(V2,V6)
(V3,V4)(V3,V6)(V3,V7)(V4,V7)(V4,V8)(V5,V9)(V5,V10)
(V6,V10)(V6,V11)(V7,V11)(V7,V12)(V8,V12)(V8,V9)
(V9,V10)(V9,V12)(V10,V11)(V11,V12)
Rhombic Dodecahedron
| VERTEX | X | Y | Z |
| V1 | 6 | 0 | 0 |
| V2 | 0 | 6 | 0 |
| V3 | -6 | 0 | 0 |
| V4 | 0 | -6 | 0 |
| V5 | 0 | 0 | 6 |
| V6 | 0 | 0 | -6 |
| V7 | 3 | 3 | 3 |
| V8 | -3 | 3 | 3 |
| V9 | -3 | -3 | 3 |
| V10 | 3 | -3 | 3 |
| V11 | 3 | 3 | -3 |
| V12 | -3 | 3 | -3 |
| V13 | -3 | -3 | -3 |
| V14 | 3 | -3 | -3 |
Tetrakaidecahedron (Lord Kelvin's Solid)
| VERTEX | X | Y | Z |
| V1 | 2 | 0 | 4 |
| V2 | 0 | 2 | 4 |
| V3 | -2 | 0 | 4 |
| V4 | -2 | -2 | 4 |
| V5 | 4 | 0 | 2 |
| V6 | 0 | 4 | 2 |
| V7 | -4 | 0 | 2 |
| V8 | 0 | -4 | 2 |
| V9 | 4 | 2 | 0 |
| V10 | 2 | 4 | 0 |
| V11 | -2 | 4 | 0 |
| V12 | -4 | 2 | 0 |
| V13 | -4 | -2 | 0 |
| V14 | -2 | -4 | 0 |
| V15 | 2 | -4 | 0 |
| V16 | 4 | -2 | 0 |
| V17 | 4 | 0 | -2 |
| V18 | 0 | 4 | -2 |
| V19 | -4 | 0 | -2 |
| V20 | 0 | -4 | -2 |
| V21 | 2 | 0 | -4 |
| V22 | 0 | 2 | -4 |
| V23 | -2 | 0 | -4 |
| V24 | -2 | -2 | -4 |
Tetrakaidecahedron edge map: (V1,V2)(V2,V3)(V3,V4)(V1,V4)(V1,V5)(V2,V6)(V3,V7)(V4,V8)
(V5,V9)(V5,V16)(V6,V10)(V6,V11)(V7,V12)(V7,V13)(V8,V14)(V8,V15)
(V9,V10)(V11,V12)(V13,V14)(V15,V16)(V17,V9)(V17,V16)
(V18,V10)(V18,V11)(V19,V12)(V19,V13)(V20,V14)(V20,V15)
(V17,V21)(V18,V22)(V19,V23)(V20,V24)(V21,V22)(V22,V23)
(V23,V24)(V24,V21)
FIVE FOLD SYMMETRY BASED POLYHEDRA
Let p = (1 + sqrt(5)) /2
Icosahedron
| VERTEX | X | Y | Z |
| V1 | 1 | 0 | p |
| V2 | -1 | 0 | p |
| V3 | 1 | 0 | -p |
| V4 | -1 | 0 | -p |
| V5 | 0 | p | 1 |
| V6 | 0 | -p | 1 |
| V7 | 0 | p | -1 |
| V8 | 0 | -p | -1 |
| V9 | p | 1 | 0 |
| V10 | -p | 1 | 0 |
| V11 | p | -1 | 0 |
| V12 | -p | -1 | 0 |
edge map: (V1,V5)(V1,V2)(V1,V6)(V1,V9)(V1,V11)(V2,V5)(V2,V6)(V2,V10)(V2,V12)
(V3,V4)(V3,V7)(V3,V8)(V3,V9)(V3,V11)(V4,V7)(V4,V8)(V4,V10)(V4,V12)
(V5,V7)(V5,V9)(V5,V10)(V6,V8)(V6,V11)(V6,V12)(V7,V9)(V7,V10)
(V8,V11)(V8,V12)(V9,V11)(V10,V12)
S Quantum Module
| VERTEX | X | Y | Z |
| A | 1 | 0 | p |
| B | 0 | 0 | p |
| C | 0 | p | 1 |
| D | 0 | 0 | p^2 |
Regular Dodecahedron
| VERTEX | X | Y | Z |
| V1 | 0 | p | p^3 |
| V2 | 0 | -p | p^3 |
| V3 | p^2 | p^2 | p^2 |
| V4 | -p^2 | p^2 | p^2 |
| V5 | -p^2 | -p^2 | p^2 |
| V6 | p^2 | -p^2 | p^2 |
| V7 | p^3 | 0 | p |
| V8 | -p^3 | 0 | p |
| V9 | p | p^3 | 0 |
| V10 | -p | p^3 | 0 |
| V11 | -p | -p^3 | 0 |
| V12 | p | -p^3 | 0 |
| V13 | p^3 | 0 | -p |
| V14 | -p^3 | 0 | -p |
| V15 | p^2 | p^2 | -p^2 |
| V16 | -p^2 | p^2 | -p^2 |
| V17 | -p^2 | -p^2 | -p^2 |
| V18 | p^2 | -p^2 | -p^2 |
| V19 | 0 | p | -p^3 |
| V20 | 0 | -p | -p^3 |
edge map: (V1,V2)(V1,V3)(V1,V4)(V2,V5)(V2,V6)(V3,V7)(V3,V9)
(V4,V8)(V4,V10)(V5,V8)(V5,V11)(V6,V12)(V6,V7)
(V7,V13)(V8,V14)(V9,V10)(V9,V15)(V10,V16)(V11,V12)
(V11,V17)(V12,V18)(V13,V15)(V13,V18)(V14,V16)(V14,V17)
(V15,V19)(V16,V19)(V17,V20)(V18,V20)(V19,V20)
Rhombic Triacontahedron
| VERTEX | X | Y | Z |
| V1 | -p^2 | 0.0 | p^3 |
| V2 | 0.0 | p | p^3 |
| V3 | -p^2 | p^2 | p^2 |
| V4 | -p^3 | 0.0 | p |
| V5 | -p^2 | -p^2 | p^2 |
| V6 | 0.0 | -p | p^3 |
| V7 | p^2 | 0.0 | p^3 |
| V8 | 0.0 | p^3 | p^2 |
| V9 | -p^3 | p^2 | 0.0 |
| V10 | -p^3 | -p^2 | 0.0 |
| V11 | 0.0 | -p^3 | p^2 |
| V12 | p^2 | p^2 | p^2 |
| V13 | -p | p^3 | 0.0 |
| V14 | -p^3 | 0.0 | -p |
| V15 | -p | -p^3 | 0.0 |
| V16 | p^2 | -p^2 | p^2 |
| V17 | p^3 | 0.0 | p |
| V18 | p | p^3 | 0.0 |
| V19 | -p^2 | p^2 | -p^2 |
| V20 | -p^2 | -p^2 | -p^2 |
| V21 | p | -p^3 | 0.0 |
| V22 | p^3 | p^2 | 0.0 |
| V23 | 0.0 | p^3 | -p^2 |
| V24 | -p^2 | 0.0 | -p^3 |
| V25 | 0.0 | -p^3 | -p^2 |
| V26 | p^3 | -p^2 | 0.0 |
| V27 | p^3 | 0.0 | -p |
| V28 | p^2 | p^2 | -p^2 |
| V29 | 0.0 | p | -p^3 |
| V30 | 0.0 | -p | -p^3 |
| V31 | p^2 | -p^2 | -p^2 |
| V32 | p^2 | 0.0 | -p^3 |
edge map: (V1,V2)(V1,V3)(V1,V4)(V1,V5)(V1,V6)(V2,V7)
(V2,V8)(V3,V8)(V3,V9)(V4,V9)(V4,V10)(V5,V10)(V5,V11)
(V6,V11)(V6,V7)(V7,V12)(V7,V16)(V7,V17)(V8,V12)(V8,V13)
(V8,V18)(V9,V13)(V9,V14)(V9,V19)(V10,V14)(V10,V15)(V10,V20)
(V11,V15)(V11,V16)(V11,V21)(V12,V22)(V13,V23)(V14,V24)(V15,V25)
(V16,V26)(V17,V26)(V17,V22)(V18,V22)(V18,V23)(V19,V23)
(V19,V24)(V20,V24)(V20,V25)(V21,V25)(V21,V26)(V22,V27)
(V22,V28)(V23,V28)(V23,V29)(V24,V29)(V24,V30)(V25,V30)
(V25,V31)(V26,V31)(V26,V27)(V27,V32)(V28,V32)(V29,V32)
(V30,V32)(V31,V32)
To Do
I have not found an orientation for the following polyhedra which
result in simple coordinates for their vertices. I will give the decimal
value for the (x, y, z) coordinates which I calculated some years ago.
The exact expressions are too difficult to express here at this time. I hope to
give the exact expressions in later updates to this web page.
T Quantum Module
| VERTEX | X | Y | Z |
| A | -0.231643001 | 0.047721083 | 0.124935417 |
| B | 0.077214334 | -0.143163248 | 0.124935417 |
| C | 0.077214334 | 0.047721083 | 0.124935417 |
| D | 0.077214334 | 0.047721083 | -0.374806250 |
E Quantum Module
| VERTEX | X | Y | Z |
| A | -0.231762746 | 0.047745751 | 0.125 |
| B | 0.077254249 | -0.143237254 | 0.125 |
| C | 0.077254249 | 0.047745751 | 0.125 |
| D | 0.077254249 | 0.047745751 | -0.375 |
Truncated Icosahedron
(Buckminsterfullerene)
VERTEX | X | Y | Z |
| V1 | 0.0 | -0.850650808 | 2.327438437 |
| V2 | 0.809016994 | -0.262865556 | 2.327438437 |
| V3 | 0.5 | 0.688190960 | 2.327438437 |
| V4 | -0.5 | 0.688190960 | 2.327438437 |
| V5 | -0.809016994 | -0.262865556 | 2.327438437 |
| V6 | 0.0 | -1.701301617 | 1.801707325 |
| V7 | 1.618033989 | -0.525731112 | 1.801707325 |
| V8 | 1.0 | 1.376381920 | 1.801707325 |
| V9 | -1.0 | 1.376381920 | 1.801707325 |
| V10 | -1.618033989 | -0.525731112 | 1.801707325 |
| V11 | 0.809016994 | -1.964167173 | 1.275976213 |
| V12 | 1.618033989 | -1.376381920 | 1.275976213 |
| V13 | 2.118033989 | 0.162459848 | 1.275976213 |
| V14 | 1.809016994 | 1.113516364 | 1.275976213 |
| V15 | 0.5 | 2.064572881 | 1.275976213 |
| V16 | -0.5 | 2.064572881 | 1.275976213 |
| V17 | -1.809016994 | 1.113516364 | 1.275976213 |
| V18 | -2118033989 | 0.162459848 | 1.275976213 |
| V19 | -1.618033989 | -1.376381920 | 1.275976213 |
| V20 | -0.809016994 | -1.964167173 | 1.275976213 |
| V21 | 0.5 | -2.389492577 | 0.425325404 |
| V22 | 2.118033989 | -1.213922072 | 0.425325404 |
| V23 | 2.427050983 | -0.262865556 | 0.425325404 |
| V24 | 1.809016994 | 1.639247477 | 0.425325404 |
| V25 | 1.0 | 2.227032729 | 0.425325404 |
| V26 | -1.0 | 2.227032729 | 0.425325404 |
| V27 | -1.809016994 | 1.639247477 | 0.425325404 |
| V28 | -2.427050983 | -0.262865556 | 0.425325404 |
| V29 | -2.118033989 | -1.213922072 | 0.425325404 |
| V30 | -0.5 | -2.389492577 | 0.425325404 |
| V31 | 1.0 | -2.227032729 | -0.425325404 |
| V32 | 1.809016994 | -1.639247477 | -0.425325404 |
| V33 | 2.427050983 | 0.262865556 | -0.425325404 |
| V34 | 2.118033989 | 1.213922072 | -0.425325404 |
| V35 | 0.5 | 2.389492577 | -0.425325404 |
| V36 | -0.5 | 2.389492577 | -.0425325404 |
| V37 | -2.118033989 | 1.213922072 | -0.425325404 |
| V38 | -2.427050983 | 0.262865556 | -0.425325404 |
| V39 | -1.809016994 | -1.639247477 | -0.425325404 |
| V40 | -1.0 | -2.227032723 | -0.425325404 |
| V41 | 0.5 | -2.064572881 | -1.275976213 |
| V42 | 1.809016994 | -1.113516364 | -1.275976213 |
| V43 | 2.118033989 | -0.162459848 | -1.275976213 |
| V44 | 1.618033989 | 1.376382920 | -1.275976213 |
| V45 | 0.809016994 | 1.964167173 | -1.275976213 |
| V46 | -0.809016994 | 1.964167173 | -1.275976213 |
| V47 | -1.618033989 | 1.376381920 | -1.275976213 |
| V48 | -2.118033989 | -0.162459848 | -1.275976213 |
| V49 | -1.809016994 | -1.113516364 | -1.275976213 |
| V50 | -0.5 | -2.064572881 | -1.275976213 |
| V51 | 1.0 | -1.376381920 | -1.801707325 |
| V52 | 1.618033989 | 0.525731112 | -1.801707325 |
| V53 | 0.0 | 1.701301617 | -1.801707325 |
| V54 | -1.618033989 | 0.525731112 | -1.891707325 |
| V55 | -1.0 | -1.376381920 | -1.801707325 |
| V56 | 0.5 | -0.688190960 | -2.327438437 |
| V57 | 0.809016994 | 0.262865556 | -2.327438437 |
| V58 | 0.0 | 0.850650808 | -2.327438437 |
| V59 | -0.809016994 | 0.262865556 | -2.327438437 |
| V60 | -0.5 | -0.688190960 | -2.327438437 |
Usage Note: My work is copyrighted. You may use my work but
you may not include my work, or parts of it, in any for-profit project
without my consent.