


WANKEL ENGINE LIKE ALTERNATING ROTOR

C = 37.37736814°

A = 31.71747441 B = 20.90515745

Fig. 901.03 The Basic Disequilibrium 120 LCD Triangle:

12 vertexes surrounded by 10 converging angles 12×10=120

20 vertexes surrounded by 6 converging angles $20 \times 6 = 120$

30 vertexes surrounded by 4 converging angles $30 \times 4 = 120$

360 converging angles

The 360 convergent angles must share the 720° reduction from absolute sphere to chorded sphere: $720/360 = 2^{\circ}$ per each corner; 6° per each triangle.

All of the spherical excess 6° has been massaged by the irreducibility of the 90° and 60° corners into the littlest corner. .: $30 \rightarrow 36$.

In reducing 120 spherical triangles described by the 15 great circles to planar faceted polyhedra, the spherical excess 6° would be shared proportionately by the 90° - 60° - 30° flat relationship = 3:2:1.

The above tells us that freezing 60-degree center of the icosa triangle and sharing the 6-degree spherical excess find A Quanta Module angles exactly congruent with the icosa's 120 interior angles.