![]() |
1005.21
![]() |
![]() |
1005.22
![]() |
![]() |
1005.23
![]() |
![]() |
1005.24
![]() |
![]() |
1005.30
![]() |
![]() |
1005.31
![]() |
![]() |
1005.32
![]() |
![]() |
1005.40
![]() |
![]() |
1005.50
![]() |
![]() |
1005.51
![]() |
![]() |
1005.52
![]() |
![]() |
1005.53
![]() |
![]() |
1005.54
![]() |
![]() |
1005.55
![]() |
![]() |
1005.56
![]() |
![]() |
1005.60
![]() |
![]() |
1005.61
![]() |
![]() |
1005.611
![]() |
![]() |
1005.612
![]() |
![]() |
1005.613
![]() |
![]() |
1005.614
![]() |
![]() |
1005.62
![]() |
![]() |
1005.63
![]() |
![]() |
1006.10
![]() |
![]() |
1006.11
![]() |
![]() |
1006.12
![]() |
![]() |
1006.14
![]() |
![]() |
1006.20
![]() |
![]() |
1006.21
![]() |
![]() |
1006.22
![]() |
![]() |
1006.23
![]() |
![]() |
1006.24
![]() |
![]() |
1006.25
![]() |
![]() |
1006.26
![]() |
![]() |
1006.27
![]() |
![]() |
1006.30
![]() |
![]() |
1006.31
![]() |
![]() Fig. 1006.32 |
1006.32
![]() |
![]() |
1006.33
![]() |
![]() |
1006.34
![]() |
![]() |
1006.35
![]()
|
![]() |
1006.36
![]()
|
![]() |
1006.37
![]() |
![]() |
1006.40
![]() |
![]() |
1006.41
![]() ![]() ![]() |
![]() |
1007.10
![]() |
![]() |
1007.11
![]() |
![]() |
1007.12
![]() |
![]() |
1007.13
![]() |
![]() |
1007.14
![]() |
![]() |
1007.15
![]() |
![]() |
1007.16
![]() |
![]() |
1007.20
![]() |
![]() |
1007.21
![]() |
![]() |
1007.22
![]()
|
![]() |
1007.23
![]() |
![]() |
1007.24
![]() |
![]() |
1007.25
![]() |
![]() |
1007.26
![]() |
![]() |
1007.27
![]() |
![]() |
1007.28
![]() |
![]() |
1007.29
![]() |
![]() Fig. 1007.30 |
1007.30
![]() You see only three triangles, but there is a fourth underneath that is implicit as the base of the tetrahedron, with the Central vertex D being the apex of the tetrahedron. The crossing point (vertex-fix) in the middle only superficially appears to be in the same plane as ABC. The outer edges of the three triangles you see, ACD, CDB, ADB, are congruent with the hidden base triangle, ABC. Euler assumed the three triangles ACD, CDB, ADB to be absolutely congruent with triangle ABC. Looking at it from the bird's-eye view, unoperationally, Euler misassumed that there could be a nonexperienceable, no-thickness plane, though no such phenomenon can be experientially demonstrated. Putting three points on a piece of paper, interconnecting them, and saying that this "proves" that a no- thickness, nonexperiential planar triangle exists is operationally false. The paper has thickness; the points have thickness; the lines are atoms of lead strewn in linear piles upon the paper. |
![]() |
1007.31
![]() |
Next Section: 1008.10 |